Age-Related Alteration of Brain Function during Cerebral Ischemia

  • Nili Zarchin
  • Sigal Meilin
  • Avivit Mendelman
  • Avraham Mayevsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


A great deal of knowledge has been accumulated during the last decade concerning the aging brain in health and disease. One of the major diseases causing death and disability in the elderly is ischemic stroke. However, in vivo studies, including the evaluation of brain function under ischemic conditions, have relied on models of focal cerebral ischemia in young brains. It is well documented that even in normal aging, the functional metabolism of the brain and its blood supply inevitably decline.


Carotid Artery Aging Brain Carotid Artery Occlusion Extracellular Potassium Spontaneous Electrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bar Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging, Adv. Neurol. 20, 1–9 (1978)Google Scholar
  2. 2.
    M. Davis, A. D. Mendelow, R. H. Perry, L. R. Chambers, and O. F. W. James Experimental stroke and neuroprotection in the aging rat brain, Stroke 26, 1072–1078 (1995)PubMedCrossRefGoogle Scholar
  3. 3.
    H. A. Wolinsky Long term effects of hypertension in the rat aortic wall and their relation to cocurrent aging changes: morphological and chemical studies, Circ. Res. 30, 301–309 (1972)Google Scholar
  4. 4.
    J. Marnn Age-related changes in vascular responses: a review, Mech. Ageing Dev. 79, 71–114 (1995)Google Scholar
  5. 5.
    V. Mollace, P. Rodino, R. Massoud, D. Rotiroti, and G. Nistico Age dependent changes of NO synthase activity in the rat brain, Biochem. Biophys. Res. Commun. 215, 822–827 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    K. Inada, I. Yokoi, H. Kabuto, H. Habu, A. Mori, and N. Ogawa Age-related increase in nitric oxide synthase activity in senescence accelerated mouse brain and the effect of long-term administration of superoxide radical scavenger, Mech. Ageing Dev. 89, 95–102 (1996)PubMedCrossRefGoogle Scholar
  7. 7.
    J. C. de la Tone Cerebromicrovascular pathology in Alzheimer’s disease compared to normal aging, Gerontology 43, 26–43 (1997)Google Scholar
  8. 8.
    J. S. Meyer, Y. Terayama, and S. Takashima Cerebral circulation in the elderly, Cerebrovasc. Brain Metab. Rev. 5, 122–146 (1993)PubMedGoogle Scholar
  9. 9.
    P. Fattoretti, C. Bertoni-Freddari, U. Caselli, R. Paoloni, and W. Meier-Ruge Morphologic changes in cerebellar mitochondria during aging, Anal. Quant. Cytol. Histol. 18, 205–208 (1996)PubMedGoogle Scholar
  10. 10.
    D. Takai, K. Inoue, H. Shisa, Y. Kagawa, and J. Hayashi Age-associated changes of mitochondrial translation and respiratory function in mouse brain, Biochem. Biophys. Res. Commun. 217, 668–674 (1995)PubMedCrossRefGoogle Scholar
  11. 11.
    A. Mayevsky Biochemical and physiological activities of the brain as in vivo markers of brain pathology. in: Bernstein, E. F., Callow, A. D., Nicolaides, A. N., and Shifrin, E. G. eds. Cerebral, Revascularization. Med-Orion Pub. 1993, 51–69.Google Scholar
  12. 12.
    S. Meilin, N. Zarchin, A. Mayevsky, and S. Shapira Multiparametric responses to cortical spreading depression under nitric oxide synthesis inhibition. in: Weissman, B. A., Alon, N., and Shapira, S. eds. Biochemical Pharmacological and Clinical Aspects of Nitric Oxide. New York, Plenum Press. 1995, 195–204.CrossRefGoogle Scholar
  13. 13.
    S. Meilin, G. G. Rogatsky, S. R. Thom, N. Zarchin, E. Guggenheimer-Furman, and A. Mayevsky Effects of carbon monoxide exposure on the brain may be mediated by nitric oxide, J. Appl. Physiol. 81, 10781083 (1996)Google Scholar
  14. 14.
    A. Mayevsky, A. Meilin, G. G. Rogatsky, N. Zarchin, and S. R. Thom Multiparametric monitoring of the awake brain exposed to carbon monoxide, J. Appl. Physiol. 78, 1188–1196 (1995)PubMedGoogle Scholar
  15. 15.
    Z. Breuer and A. Mayevsky Brain vasculature and mitochondrial responses to ischemia in gerbils: II. Strain differences and statistical evaluation, Brain Res. 598, 251–256 (1992)PubMedCrossRefGoogle Scholar
  16. 16.
    M. Osbakken, A. Mayevsky, I. Ponomarenko, D. Zhang, C. Duska, and B. Chance Combined in vivo NADH fluorescence and 31P-NMR to evaluate myocardial oxidative phosphorylation, J. Appl. Cardiol. 4, 305–313 (1989)Google Scholar
  17. 17.
    T. Funahashi, R. A. Floyd, and J. M. Camey Age effect on brain pH during ischemialreperfusion and pH influence on peroxidation, Neurobiol. Aging 15, 161–167 (1994)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Nili Zarchin
    • 1
  • Sigal Meilin
    • 1
  • Avivit Mendelman
    • 1
  • Avraham Mayevsky
    • 1
  1. 1.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations