The Effect of Ischemia and Hypoxia on Renal Blood Flow, Energy Metabolism and Function in Vivo

  • Donna Amran-Cohen
  • Judith Sonn
  • Merav Luger-Hamer
  • Avraham Mayevsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


The kidneys play a major role in maintaining body homeostasis by regulating the concentration of many of the plasma constituents, and by eliminating all the metabolic wastes. These functions are mediated via two interdependent regulatory systems that govern the rate of glomerular function and tubular secretion and reabsorption. For these processes the kidneys utilize 10% of the whole body oxygen consumption1. Thus, a decrease in oxygen availability causes many abnormalities in cell physiology such as: increase in mitochondrial NADH2, ATP depletion, cell swelling, an increase in intracellular free calcium, acidosis, phospholipase and protease activation, oxidant injury, inflammatory response, a reduction in glomerular filtration rate (GFR)2, 3, inducing acute renal failure (ARF). Furthermore, reperfusion itself is known to enhance renal cellular damage by formation of reactive oxygen species4. Short periods of ischemia will allow resynthesis of ATP, whereas, prolonged ischemia may cause irreversible loss of mitochondrial function, further impairing regeneration of ATP. Therefore, the rate of cell ATP recovery is dependent on the ability of the cell to survive ischemia and also on the duration of the ischemic period3.


Nitric Oxide Renal Blood Flow Oxygen Delivery Renal Tissue Renal Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Dworkin, A. M. Sun, and B. M. Brenner, The Renal Circulations. In: Brenner, B. M. ed. The Kidney. Philadelphia, USA, W.B. Saunders Company. 2000, 277–318.Google Scholar
  2. 2.
    M. C. Regan, L. S. Young, J. Geraghty, and J. M. Fitzpatrick, Regional renal blood flow in normal and disease states, Urol. Res. 23, 1–10 (1995)PubMedCrossRefGoogle Scholar
  3. 3.
    R. B. Hugh, B. M. Brenner, M. R. Clarkson, and W. Lieberthal, Acute Renal Failure. in: Brenner, B. M. ed. The Kidney. W.B. Saunders. CO. USA. 2000, 1201–1262.Google Scholar
  4. 4.
    S. C. Weight, P. R. Bell, and M. L. Nicholson, Renal ischaemia-reperfusion injury, Br. J. Surg. 83, 162–170 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    T. Q. Howes, C. R. Deane, G. E. Levin, S. V. Baudouin, and J. Moxham, The effects of oxygen and dopamine on renal and aortic blood flow in chronic obstructive pulmonary disease with hypoxemia and hypercapnia, Am. J. Respir. Crit. Care Med. 151, 378–383 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    J. Hoper, Studies on the Dog Kidney In Situ.lnfluence of Local Oxygen Deficiency. Stuttgart. New York. 1991, 35–46.Google Scholar
  7. 7.
    B. Zillig, G. Schuler, and B. Truniger, Renal function and intrarenal hemodynamics in acutely hypoxic and hypercapnic rats, Kidney Int. 14, 58–67 (1978)PubMedCrossRefGoogle Scholar
  8. 8.
    M. Saito and I. Miyagawa, Real-time monitoring of nitric oxide in ischemia-reperfusion rat kidney, Urol. Res. 28, 141–146 (2000)PubMedCrossRefGoogle Scholar
  9. 9.
    S. Bachmann and P. Mundel, Nitric oxide in the kidney: synthesis, localization, and function, Am. J. Kidney Dis. 24, 112–129 (1994)PubMedGoogle Scholar
  10. 10.
    E. Mashiach, S. Sela, J. Winaver, S. M. Shasha, and B. Kristal, Renal ischemia-reperfusion injury: contribution of nitric oxide and renal blood flow., Nephron 80, 458–467 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    W. Lieberthal, E. F. Wolf, H. G. Rennke, C. R. Valeri, and N. G. Levinsky, Renal ischemia and reperfusion impair endothelium-dependent vascular relaxation, Am. J. Physiol. 256, F894 - F900 (1989)PubMedGoogle Scholar
  12. 12.
    A. Mayevsky, R. Nakache, M. Luger-Hamer, D. Amran, and J. Sonn, Assessment of transplanted kidney vitality by a multiparametric monitoring system, Transplant. Proc. 33, 2933–2934 (2001)PubMedCrossRefGoogle Scholar
  13. 13.
    A. Mayevsky, R. Nakache, H. Merhav, M. Luger-Hamer, and J. Sonn, Real time monitoring of intraoperative allograft vitality, Transplant. Proc. 32, 684–685 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    A. Mayevsky and B. Chance, Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer, Science 217, 537–540 (1982)PubMedCrossRefGoogle Scholar
  15. 15.
    J. Sonn, E. Granot, R. Etziony, and A. Mayevsky, Effect of hypothermia on brain multi-parametric activities in normoxic and partially ischemic rats, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 132, 239–246 (2002)PubMedCrossRefGoogle Scholar
  16. 16.
    A. Mayevsky, A. Meilin, G. G. Rogatsky, N. Zarchin, and S. R. Thom, Multiparametric monitoring of the awake brain exposed to carbon monoxide, J. Appl. Physiol. 78, 1188–1196 (1995)PubMedGoogle Scholar
  17. 17.
    A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry, Brain Res. 319, 49–68 (1984)PubMedGoogle Scholar
  18. 18.
    A. Mayevsky, E. S. Flamm, W. Pennie, and B. Chance, A fiber optic based multiprobe system for intraoperative monitoring of brain functions, SPIE Proc. 1431, 303–313 (1991)CrossRefGoogle Scholar
  19. 19.
    E. Barbiro, Y. Zurovsky, and A. Mayevsky, Real time monitoring of rat liver energy state during ischemia, Microvasc. Res. 56, 253–260 (1998)PubMedCrossRefGoogle Scholar
  20. 20.
    J. Sonn and A. Mayevsky, Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat, Brain Res. 882, 212–216 (2000)PubMedCrossRefGoogle Scholar
  21. 21.
    S. L. Linas, D. Whittenburg, and J. E. Repine, O2 metabolites cause reperfusion injury after short but not prolonged renal ischemia, Am. JPhysiol. 253, F685 - F691 (1987)Google Scholar
  22. 22.
    H. R. Brady, B. M. Brenner, M. R. Clarkson, and W. Lieberthal, Acute renal failure. in: Brenner, B. M. ed. The Kidney. Philadelphia, USA, W.B. Saunders Company. 2000, 1201–1262.Google Scholar
  23. 23.
    M. T. Vogt and E. Farber, On the molecular pathology of ischemic renal cell death. Reversible and irreversible cellular and mitochondrial metabolic alterations, Am. JPathol. 53, 1–26 (1968)Google Scholar
  24. 24.
    C. Baylis, P. Harton, and K. Engels, Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney., J Am. Soc. Nephrol 1, 875–881 (1990)PubMedGoogle Scholar
  25. 25.
    R. A. Sharkey, E. M. Mulloy, and S. J. O’Neill, Acute effects of hypoxaemia, hyperoxaemia and hypercapnia on renal blood flow in normal and renal transplant subjects, Eur. Respir. J. 12, 653–657 (1998)PubMedCrossRefGoogle Scholar
  26. 26.
    M. S. Thomiley, N. Lane, S. Simpkin, B. Fuller, M. Z. Jenabzadeh, and C. J. Green, Monitoring of mitochondrial NADH levels by surface fluorimetry as an indication of ischaemia during hepatic and renal transplantation, Adv. Exp. Med Biol. 388, 431–444 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Donna Amran-Cohen
    • 1
  • Judith Sonn
  • Merav Luger-Hamer
  • Avraham Mayevsky
  1. 1.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations