Advertisement

Classification of oscillators

  • Jan R. Westra
  • Chris J. M. Verhoeven
  • Arthur H. M. van Roermund
Chapter

Abstract

In order to achieve a hierarchical design methodology, a classification of oscillators is of utmost importance. In a good classification, we should be able to give the properties of an oscillator once we know its place in the classification. Vice versa, starting at the top of the classification, we should be able to make strategic design decisions, being aware of both the possibilities and the impossibilities of the circuits at lower levels of the hierarchy. In this chapter, a classification of oscillators is presented, that is the completion to partial classifications, made earlier by Boon [1], Doorenbosch [2] and Verhoeven [8].

Keywords

Harmonic Oscillator Delay Line Imaginary Axis Timing Reference State Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    C.A.M. Boon. Design of High-Performance Negative-Feedback Oscillators. PhD thesis, Delft University of Technology, 1989.Google Scholar
  2. [2]
    F. Doorenbosch. A Monolithically Integrated Wide-Tunable Sine Oscillator. PhD thesis, Delft University of Technology, 1982.Google Scholar
  3. [3]
    J. Mulder, W.A. Serdijn, A.C. van der Woerd, and A.H.M. van Roermund. Dynamic Translinear and Log-Domain Circuits: analysis and synthesis. Kluwer Academic Publishers, 1999.Google Scholar
  4. [4]
    W.A. Serdijn, J. Mulder, A.C. van der Woerd, and A.H.M. van Roermund. A wide-tunable translinear second-order oscillator. IEEE Journal of Solid State Circuits, February 1998.Google Scholar
  5. [5]
    J.G. Sneep and C.J.M. Verhoeven. Design of a low-noise 100-MHz balanced relaxation oscillator. ESSCIRC 1989, Vienna, Austria, 20–22 September 1989.Google Scholar
  6. [6]
    J.G. Sneep and C.J.M. Verhoeven. A new low-noise 100-MHz balanced relaxation oscillator. IEEE Journal of Solid State Circuits, vol. 25, pp. 692–698, 1990.CrossRefGoogle Scholar
  7. [7]
    Balth. van der Pol. The nonlinear theory of electric oscillations. Proceedings of the I.R.E., vol. 22, pp. 1051–1086, 1934.Google Scholar
  8. [8]
    C.J.M. Verhoeven. First-Order Oscillators. PhD thesis, Delft University of Technology, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jan R. Westra
    • 1
  • Chris J. M. Verhoeven
    • 2
  • Arthur H. M. van Roermund
    • 2
  1. 1.Philips Research LaboratoriesThe Netherlands
  2. 2.Delft University of TechnologyThe Netherlands

Personalised recommendations