Skip to main content

Abstract

At its normal pH of 8.3, sea water is virtually saturated with calcium carbonate (Revelle and Fleming, 1934; Wattenberg and Timmermann, 1936). Little energy is therefore needed to form skeletons of calcite or aragonite. Almost all of the invertebrate phyla and a number of marine plants have evolved skeletons of calcium carbonate. Vertebrates have acquired calcium phosphate skeletons. However, calcareous skeletons are not always laid down continuously and uniformly, despite the ubiquity of calcium and the relevant anions in the surrounding seawater. Yearly growth interruptions, ascribed to annual temperature changes or other climatic variables, have long been observed and understood (Orton, 1923).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANTOINE, L. and QUEMERAIS-PENCREAC’H, D., 1980. Stries et rythmes de croissance chez la Patella vulgata L. Cr. hebd. Seanc. Acad. Sci. Paris D 290: 1127–1130.

    Google Scholar 

  • BARNES, D.J., 1972. The structure and formation of growth ridges in scleractinian coral skeletons. Proc. Roy. Soc. Lond. B 182: 331–350.

    Article  Google Scholar 

  • BEAMISH, R.J. and MCFARLANE, G.A., 1983. The forgotten requirement for age validation in fisheries biology. Trans. Amer. Fisheries Soc., 112: 735–743.

    Article  Google Scholar 

  • BERRY, W.B.N. and BARKER, R.M., 1975. Growth increments in fossil and modern bivalves. In Growth rhythms and the history of the earth’s rotation. Rosenberg, G.D. and Runcorn, S.K.(Ed.) John Wiley and Sons pp. 9–25.

    Google Scholar 

  • BOURGET, E. and CRISP, D.J., 1975a. Factors affecting deposition of the shell in Balanus balanoides. J. mar. Biol. Ass. U.K., 55: 231–249.

    Article  Google Scholar 

  • BOURGET, E. and CRISP, D.J., 1975b. An analysis of the growth bands and ridges of barnacle shell plates. J. mar. Biol. Ass. U.K., 55: 439–461.

    Article  Google Scholar 

  • BROOM, M.J. and MASON, J., 1978. Growth and spawning in the pectinid Chlamys opercularis in relation to temperature and phytoplankton concentration. Marine Biology, 47: 277–285.

    Article  Google Scholar 

  • BROTHERS, E.B., 1978. Exogenous factors and the formation of daily and subdaily growth increments in fish otoliths. Amer. Zool., 18: 631.

    Google Scholar 

  • BROTHERS, E.B., MATTHEWS, C.P. and LASKER, R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull., 74: 1–8.

    Google Scholar 

  • BUDDEMEIER, R.W. and KINZIE III, R.A., 1975. The chronometric reliability of contemporary corals. In Rosenberg, G.D. and Runcorn, S.K. (Ed.) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons., pp. 135–148

    Google Scholar 

  • CAMPANA, S.E. and NEILSON, J.D., 1982. Daily growth increments in otoliths of starry flounder Platichthysstellatus and the influence of some environmental variables on their production. Can. J. Fish. Aquat. Sci., 39: 937–942.

    Article  Google Scholar 

  • CHOE, S. 1963. Daily age markings on the shell of cuttle fishes. Nature, Lond. 197: 306–307

    Article  Google Scholar 

  • CLARKE, G.R. II, 1968. Mollusk shell: Daily growth lines. Science, 161: 800–802.

    Article  Google Scholar 

  • CLARKE, G.R. II, 1975. Periodic growth and biological rhythms on experimentally grown bivalves. In Growth Rhythms and the history of the Earth’s rotation. Ed. Rosenberg, D. and Runcorn, S.K. (Ed.) John Wiley and Sons., pp. 103–117.

    Google Scholar 

  • CRENSHAW, M.A. and NEFF, J.M., 1969. Decalcification at the mantle-shell interface in molluscs. Amer. Zool., 9: 881–885.

    Google Scholar 

  • CRISP, D.J. and RICHARDSON, C.A., 1975. Tidally produced internal bands in the shells of Elminius modes-tus Darwin. Mar. Biol., 33: 155–160.

    Google Scholar 

  • DARWIN, C., 1854. A monograph of the subclass Cirripedia. II The Balanidae, the Verrucidae etc. Ray Soc. London, 684 pp.

    Google Scholar 

  • DAVENPORT, C.B., 1935. Growth lines in fossil pectens as indicators of past climates. J. Palaeont. 12: 514–515.

    Google Scholar 

  • DEITH, M.R., 1985. The composition of tidally deposited growth lines in the shell of the edible cockle Cerastoderma edule. J. mar. Biol. Ass. U.K., 65: 573–581.

    Article  Google Scholar 

  • DOLMAN, J., 1975. A technique for the extraction of environmental and geophysical information from growth records in invertebrates and stromatolites. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 191–221.

    Google Scholar 

  • DUGAL, L.P., 1939. The use of calcareous shell to buffer the product of anaerobic glycolysis in Venusmercenaria. Cellul. Comp. Physiol., 13: 235–251.

    Article  CAS  Google Scholar 

  • EKARATNE, S.U.K. and CRISP, D.J., 1982. Seasonal growth studies of intertidal gastropods from shell microgrowth band measurements, including a comparison with alternative methods. J. mar. Biol. Ass. U.K., 64: 183–210.

    Article  Google Scholar 

  • ESSIG, R.J. and COLE, C.F., 1986. Methods of estimating larval fish mortality from daily increments in otoliths. Trans. Amer. Fish. Soc., 115: 34–40.

    Article  Google Scholar 

  • EVANS, J.W., 1972. Tidal growth increments in Clinocardiun: nuttalli. Science, N.Y. 176: 416–417.

    Article  CAS  Google Scholar 

  • EVANS, J.W., 1975. Growth micromorphology of two bivalves exhibiting non-daily growth lines. In Growth rhythms and the history of the Earth’s rotation (Ed. Rosenberg, G.D. and Runcorn, S.K. ( Eds.) John Wiley and Sons, pp. 119–134.

    Google Scholar 

  • EVANS, J.W. and LE MESURIER, M.H., 1972. Functional micromorphology and circadian growth of the rock boring clam Penitella penita. Can. J. Zool., 50: 1251–1258.

    Article  Google Scholar 

  • FARROW, G.E., 1971. Periodicity structures in the bivalve shell: experiments to establish growth controls in Cerastoderma edule from the Thames estuary. Palaeontology 14: 571–588.

    Google Scholar 

  • GEBELEIN, C.D. and HOFFMAN, P., 1968. Intertidal stromatolites from Cape Sable Florida. Geol. Soc. Am. Spec. Pap., 121: 109.

    Google Scholar 

  • GERSIENKORN, H., 1969. The earliest past of the Earth Moon system. Icarus 11: 189–207.

    Article  Google Scholar 

  • GRUFFYDD, LL.D., 1981. Observations on the rate of production of external ridges on the shell of Pecten maximus in the laboratory. J. mar. Biol. Ass. U.K., 61: 401–411.

    Article  Google Scholar 

  • HALL, C.A., DOLLASE, W.A. and CORBATO, C.E., 1974. Shell growth in Tivela stultorum (Maure, 1823) and Callista chione (Linnaeus, 1758 ) (Bivalvia): Annual periodicity, latitudinal differences and diminution with age. Palaeogr. Palaeoclim. Palaeoecol., 15: 33–61.

    Article  Google Scholar 

  • HARDIE, L.A. and GINSBERG, RN., 1971. The sedimentary record of a tidal flat lamination. Geol. Soc. Am. Abst. Prog., 3: 591.

    Google Scholar 

  • HOUSE, M.R. and FARROW, G.E., 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, 219: 1384–1386.

    Article  PubMed  CAS  Google Scholar 

  • JONES, P. and CRISP, M., 1985. Microgrowth bands in chitons: evidence of tidal periodicity. J. mollusc. Studies, 51: 133–137.

    Google Scholar 

  • KENNY, R., 1977. Growth studies of the tropical intertidal limpet Acmaea antillarum. Marine Biology, 39: 161–170.

    Article  Google Scholar 

  • KOIKE, H., 1973. Daily growth lines of the clam Meretrix lusoria - a basic study for the estimation of prehistoric seasonal gathering. J. Antrop. Soc. Nippon, 81: 122–138.

    Article  Google Scholar 

  • KOIKE, H., 1975. The use of daily and annual growth lines of the clam Meretrix lusoria in estimating seasons of Jornon Penrod shell gathering. Bull. R. Soc. N.Z., 18: 189–193.

    Google Scholar 

  • KOIKE, H., 1980 Microstructure of the growth increment in the shell of Meretrix lusoria. In The mechanics of biomineralisation in animals and plants. Proceedings of the Third International Biomineralisation Symposium, 1977. ( Omori, M, and Watabe, N., Eds) Tokai University Press, pp. 93–97.

    Google Scholar 

  • LAMBECK, K., 1980. The Earth’s variable rotation: geophysical causes and consequences. Cambridge University Press xi +449 pp.

    Google Scholar 

  • LE GALL, M.P., 1970. Méthode d’étude des stries de croissance de Mytilus edulis L. Mise en évidence du rhythme et des modalités de leur formation. C.r. hebd. Seanc. Acad. Sci. Paris D., 270: 590–511.

    Google Scholar 

  • LUTZ, R.A. and RHOADS, D.C., 1977. Anaerobiosis and a theory of growth line formation. Science, N.Y., 198: 1222–1227.

    Article  CAS  Google Scholar 

  • MACCLINTOCK, C. and PANNELLA, G., 1969. Time of calcification in the bivalve mollusk M. mercenaria (L.) during the 24 h period. Ann. meeting Geol. Soc. Amer., p140.

    Google Scholar 

  • MAZZULLO, S.J., 1971. Length of the year during Silurian and Devonian periods: New Values. Geol. Soc. Am. Bull., 82: 1085–1086.

    Article  Google Scholar 

  • MOHR, R.E., 1975. Measured Periodicities of the Biwabik (Precambrian) Stromatolites and their geophysical significance. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 43–56.

    Google Scholar 

  • MONTY, C.L.V., 1965. Recent algal stromatolites in the Windward lagoon, Andros Island, Bahamas. Ann. Soc. Geol. Belg., 88: 296–376.

    Google Scholar 

  • MUNK, W.H. and MACDONALD, G.J. 1960. The rotation of the Earth. Cambridge University Press. London and NY, 313 pp.

    Google Scholar 

  • O’HORA, N.P.J., 1975. The detection of recent changes in the Earth’s rotation. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.J.(Eds) John Wiley and Sons, 427–444.

    Google Scholar 

  • ORTON, J.H., 1923. On the significance of “rings” on the shells of Cardium and other molluscs. Nature, London, 112: 10.

    Article  Google Scholar 

  • PANNELLA, G., 1971. Fish otoliths: daily growth layers and periodical patterns. Science (Washington D.C.), 173: 1127–1127.

    Article  Google Scholar 

  • PANNELLA, G., 1972. Palaeontological evidence on the Earth’s rotational history since early precambrian. Astrophys. Space Sci., 16: 212–237.

    Google Scholar 

  • PANNELLA, G., 1974. Otolith growth patterns: an aid in age determination in temperate and tropical fishes. In Bagenal, T.B. (Ed.) The aging of fish. Unwin Bros, Surrey, England. pp. 28–29.

    Google Scholar 

  • PANNELLA, G., 1975. Palaeontological clocks and the history of the Earth’s rotation. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 253–287.

    Google Scholar 

  • PANNELLA, G., 1976. Tidal growth patterns in recent and fossil mollusc bivalves: a tool for the reconstruction of Paleotides. Die Naturwissenschaften, 63: 539–543.

    Article  Google Scholar 

  • PANNELLA, G. and MACCLINTOCK, C., 1968. Biological and environmental rhythms reflected in moluscan shell growth. J. palaeontol., 42(5) Suppl. 64–80.

    Google Scholar 

  • PANNELLA, G., MACCLINTOCK, C. and THOMPSON, M.M., 1968. Palaeontologic evidence of variations in length of synodic month since late Cambrian. Science, 162: 792–796.

    Article  PubMed  CAS  Google Scholar 

  • PHILBRICK, F.A. and HOLMYARD, E.J., 1932. A textbook of theoretical and inorganic chemistry. Temple Press, Letchworth., vii - 803 pp.

    Google Scholar 

  • REVELLE, R. and FLEMING, RH., 1934. The solubility product constant of calcium carbonate in seawater. Proc. Fifth Pacific Cong. Canada, 1933, Vol. 3: 2089–2092.

    CAS  Google Scholar 

  • RHOADS, D.C. and PANNELLA, G., 1970. The use of molluscan shell patterns in ecology and palaeoecology. Lethaia 3: 143–161.

    Article  Google Scholar 

  • RICHARDSON, C.A., 1987. Tidal bands in the shell of the clam Tapes philippinarum (Adams and Reeve, 1950 ). Proc. R. Soc. Lond. B. 230: 367–387.

    Article  Google Scholar 

  • RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1979. Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edulis ( L. ). Malacologia 5: 277–290.

    Google Scholar 

  • RICHARDSON, C.A., CRISP, D.J., RUNHAM, N.W., and GRUFFYDD, LL..D., 1980a. The use of tidal bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-arctic conditions. J. mar. Biol. Ass. U.K., 60: 977–990.

    Article  Google Scholar 

  • RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1980b. An endogenous rhythm in shell deposition in Cerastoderma edule. J. mar. Biol. Ass. U.K., 60: 991–1004.

    Article  Google Scholar 

  • RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1981. Factors influencing shell deposition during a tidal cycle in the intertidal bivalve, Cerastoderma edule. J. mar. Biol. Ass. U.K., 61: 465–476.

    Article  Google Scholar 

  • ROSENBERG, G.D., 1973. Calcium concentration in the bivalve Clione andatella Sowerby. Nature, Lon-don, 244: 155–156.

    Article  CAS  Google Scholar 

  • ROSENBERG, G.D. and JONES, C.B., 1975. Approaches to chemical periodicities in molluscs and stromatolites. In Rosenberg, G.D. and Runcorn, S.K. (Ed.) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons, pp. 223–241.

    Google Scholar 

  • ROSENBERG, G.D. and RUNCORN, S.K., 1975 (Eds.) Growth rhythms and the history of the Earth’s rotation, xvi+559pp. John Wiley and Sons, London, New York, Sydney, Toronto.

    Google Scholar 

  • SCHMIDT, P.O., 1984. Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. US Nat. Fish Services, Fish Bull., 82: 237–242.

    Google Scholar 

  • SCHMIDT, R.E. and FABRIZIO, M.C., 1980. Daily growth increments on otoliths for aging young of the year largemouth bass from a wild population. Progressive Fish Culturist, 42: 78–80.

    Article  Google Scholar 

  • SCRUTTON, C.T., 1965. Periodicity in Devonian coral growth. Palaeontology 7: 552–558.

    Google Scholar 

  • SCRUTTON, C.T., 1970. Evidence for a monthly periodicity in the growth of some corals. In Palaeogeophysics. (Ed. Runcorn, S.K.) Academic Press, London and New York.

    Google Scholar 

  • SCRUTTON, C.T., 1978. Periodic growth features in fossil organisms and the length of day and month. In Tidal friction and the Earth’s rotation (Ed. Broche, P. and Sunderland, J.) Springer-Verlag, Berlin, pp. 154–196.

    Chapter  Google Scholar 

  • TAUBERT, B.D. and COBLE, D.W., 1977. Daily increments in otoliths of three species of Lepomis and Tilapia mossambica. J. Res. Board Canada, 332–340.

    Google Scholar 

  • WAITENBURG, H. and TIMMERMANN, E., 1936. Uber die Sattingung des Seewassers an CaCO3, and die anorganogene Bilding von Kalksedimenten. Ann. d. Hydro. u. Mar. Meteor, 23–31: 1936.

    Google Scholar 

  • WELLS, J.W., 1963. Coral growth and geochronometry. Nature, Lond,. 197: 948–950.

    Article  Google Scholar 

  • WELLS, J.W., 1970. Problems of annual and daily growth rings in corals. Photogrammetry. U.S. Coast and Geodetic Survey, Washington.

    Google Scholar 

  • WHYTE, M.A., 1975. Time, tide and the cockle. In Rosenberg, G.D. and Runcorn, S.K. (Eds) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons, pp. 177–189.

    Google Scholar 

  • WILBUR, K.M., 1972. Shell formation in molluscs. In Chemical Zoology Vol. 7Mo11usca ( Florkin, M. and Scheer, B.T. Eds.) Academic Press, N.Y., pp. 103–145.

    Google Scholar 

  • WILD, A., and FORMAN, T.J., 1980. The relationship between otolith increments and time for Yellow fin and Skipjack Tuna marked with tetracycline. Inter America Tropical Tuna Commission, La Jolla, Ca. USA, Bull. 17: 509–560.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crisp, D.J. (1989). Tidally Deposited Bands in Shells of Barnacles and Molluscs. In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics