The Effect of Magnetotactic Bacteria on the Magnetic Properties of Marine Sediments

  • John F. Stolz
  • Shih-Bin R. Chang
  • Joseph L. Kirschvink

Abstract

Magnetotactic bacteria have been studied in three distinct sedimentary marine environments: a hypersaline lagoon, an intertidal CO3 marsh, and an open ocean basin. The bacteria and the ultra-fine grained, single domain magnetite (Fe3O4) they produce were extracted from the sediments and studied with transmission electron microscopy. Magnetic properties of the sediments were measured by rock magnetic techniques using a SQUID magnetometer. Our results show that magnetotactic bacteria contribute a significant fraction of the natural remanent magnetization to their sedimentary environment and in some cases may be the sole source of the stable remanence carrying mineral. The occurrence and abundance of these bacteria in a diversity of marine environments implies that they may also play a role in the microbial iron cycle.

Keywords

Natural Remanent Magnetization Saturation Isothermal Remanent Magnetization Alternate Field Laminate Sediment Biogenic Magnetite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BLAKEMORE, RP., 1975. Magnetotactic bacteria. Science 190, 377–370.PubMedCrossRefGoogle Scholar
  2. BLAKEMORE, R.P., 1982. Magnetotactic bacteria. Annual Reviews of Microbiology 36, 217–238.CrossRefGoogle Scholar
  3. BLAKEMORE, R.P., FRANKEL, R.B. KALMIJN, AD.J., 1980. South seeking bacteria in the southern hemisphere. Nature 286, 384–385.Google Scholar
  4. BLAKEMORE, RP., SHORT, KA., BASZYLINSKI, D.A., ROSENBLATT, C., FRANKEL, RB., 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiology Journal 4, 53–72.CrossRefGoogle Scholar
  5. BUTLER, R.F. BANERJEE, S.K., 1975. Theoretical single-domain size range in magnetite and titanomagnetite. Journal of Geophysical Research 80, 4049–4058.CrossRefGoogle Scholar
  6. CHANG, S.R. KIRSCHVINK, J.L., 1985. Possible biogenic magnetite fossils from the Miocene marine clay of Crete. In Magnetite Biomineralization and Magnetoreception in Organisms, (eds. J.L. Kirschvink, D.S. Jones B.J. McFadden ) pp 647–669 New York: Plenum Press.CrossRefGoogle Scholar
  7. CHANG, S.R., STOLZ, J.F., KIRSCI-IVINK, J.L., 1987. Biogenic magnetite as primary remanence carrier in limestone deposits. Physics of Earth and Planetary Interiors, 46, 289–303.Google Scholar
  8. DEMITRACK, A., 1985. A search for bacterial magnetite in the sediment of Eel Marsh, Woods Hole, Massachusetts. In Magnetite Biomineralization and Magnetoreception in Organisms, (eds. J.L. Kirschvink, D.S. Jones B.J. McFadden ) pp 625–645 New York: Plenum Press.CrossRefGoogle Scholar
  9. FRANKEL, R.B. 1984. Magnetic guidance of organisms. Annual Reviews of Biophysics and Bioengineering 13, 85–103.CrossRefGoogle Scholar
  10. FRANKEL, R.B. 1979. Blakemore, R.P. Wolfe, R.S., 1979. Magnetite in fresh-water bacteria Science 203, 1355–1356.Google Scholar
  11. FULLER, M., GOREE, W.S. GOODMAN, W.L., 1985. An introduction to the use of SQUID magnetometers in biomagnetism. In Magnetite Biomineralization and Magnetoreception in Organisms, (eds. J.L. Kirschvink, D.S. Jones B.J. McFadden ) pp 104–151 New York: Plenum Press.Google Scholar
  12. GINSBERG, R.N., 1964. South Florida carbonate sediments. In Guidebook for Field Trip 1, pp. 72, New York: Geological Society of America.Google Scholar
  13. GOLUBIC, S FOCKE, J.W., 1978. Phormidiun: hendersonii I Lowe: identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology 48, 751–764.Google Scholar
  14. HORODYSKI, R.J., BLOESSER, B., VONDER HAAR, S.J., 1977. Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. Journal of Sedimentary Petrology 2, 237–273.Google Scholar
  15. KARLIN, R. LEVI, S., 1983. Diagenesis of magnetic minerals in recent hemipalegic sediments. Nature 303, 327–330.Google Scholar
  16. KARLIN, R. LEVI, S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. Journal of Geophysical Research 90, 10373–10392.Google Scholar
  17. KIRSCHVINK, J.L., 1983. Biogenic ferrimagnetism: a new biomagnetism. In Biomagnetism: an Interdisciplanary Approach (ed. S. Williamson ) pp. 472–492, New York: Plenum Press.Google Scholar
  18. KIRSCHVINK, J.L. LOWENSTAM, H.A., 1979. Mineralization and magnetization of chiton teeth: paleomagnetic, sedimentologic and biologic implications of organic magnetite. Earth and Planetary Science Letters 44, 193–204.Google Scholar
  19. KIRSCHVINK, J.L. CHANG, S.-B.R, 1984. Ultrafine-grained magnetite in deep-sea sediments: possible bacterial magnetofossils. Geology 12, 559–562.Google Scholar
  20. LESLIE, B., HAMMOND, D.E., LUND, S. HAMILTON, M., 1984. Diagenesis of iron and sulfur in sediments from the California borderland, EOS 65, 957.Google Scholar
  21. LINS DE BARROS ESQUIVEL, II.G.Y., 1985. Magnetic microorganisms found in muds from Rio de Janeiro. In Magnetite Biomineralization and Magnetoreception in Organisms, (eds. J.L. Kirschvink, D.S. Jones B.J. McFadden ) pp 289–309 New York: Plenum Press.Google Scholar
  22. LOWRIE, W. AND IIELLER, F., 1982. Magnetic properties of marine limestones. Reviews of Geophysics and Space Physics 20, 171–192.CrossRefGoogle Scholar
  23. LUND, S.P., HENYEY, T.L. AND HAMMOND, D., 1983. Rock magnetic parameters as indicators of Holocene digenetic and lithostratographic changes in the marine California continental borderland, EOS64, 682.Google Scholar
  24. MANN, S., MOENCH, T.T., WILLIAMS, R.J.P., 1984a. A high resolution electron microscopic investigation of bacterial magnetite. Implications for crystal growth. Proceedings of the Royal Society of London B 221, 385–393.Google Scholar
  25. MANN, S., FRANKEL, R.B. BLAKEMORE, R.B., 1984b. Structure, morphology and crystal growth of bacterial magnetite. Nature 310, 405–407.Google Scholar
  26. MARGULIS, L., BARGHOORN, E.S., ASIIENDORF, D., BANERJEe, S., Chase, D., Francis, S., Giovannoni, S. Stolz, J.F., 1980. The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: does it have Precambrian analogs? Precambrian Research 11, 93–123.Google Scholar
  27. MARGULIS, L., GROSOVSKI, B.D.D., STOLZ, J.F., GONG-Collins, E.J., LENK, S., READ, D., LOPEZ-CORTEZ, A., 1983. Distinctive microbial structures and the pre-Phanerozoic fossil record. Precambrian Research 20, 443–447.Google Scholar
  28. MATSUDA, T., ENDO, J., OSAKABE, N. TONOMURA, A., 1983. Morphology and structure of biogenic magnetite particles. Nature 302, 411–412.Google Scholar
  29. MOENCH, T.T. KONETZKA, W.A., 1978. A novel method for the isolation and study of a magnetotactic bacterium. Archives of Microbiology 119, 203–212.Google Scholar
  30. NEALSON, K.A.,1983. The microbial iron cycle. In Microbial Geochemistry (ed. W.E. Krumbein) pp. 191–221 Boston: Blackwell Scientific.Google Scholar
  31. SAVRDA, C.E., BOTTJER, D.J. GORSLINE, D.S., 1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California Continental Borderland. The American Association of Petroleum Geologists Bulletin 68, 1179–1192.Google Scholar
  32. STOLZ, J.F., 1983. The fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: Methods of in situ study of the laminated sediments. Precambrian Research 20, 472–492.Google Scholar
  33. STOLZ, J.F., 1984a. The fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: transmission electron microscopy as a diagnostic tool in studying microbial communities in situ. In Microbial Mats: Stromatolites (eds. Y. Cohen, R.W. Castenholz, H.O. Halvorson) pp. 23–38, New York: Alan R. Liss and Co.Google Scholar
  34. STOLZ, J.F., 1984b. The effects of catastrophic inundation (1979–1983) on the composition and ultrastructure of a stratified microbial community, Laguna Figueroa, Baja California, Mexico, Ph.D. thesis, Boston University, 144 pages.Google Scholar
  35. STOLZ, J.F., 1985. The microbial community at Laguna Figueroa, Baja California, Mexico: from miles to microns. Origins of Life 15, 347–352.PubMedCrossRefGoogle Scholar
  36. STOLZ, J.F., MARGULIS, L., 1984. The stratified microbial community at Laguna Figueroa, Baja California, Mexico: a possible model for prePhanerozoic laminated microbial communities preserved in cherts. Origins of Life 14, 671–679.PubMedCrossRefGoogle Scholar
  37. STOLZ, J.F., CHANG, S-B.R., AND KIRSCI-IUINK, J.L., 1986. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments. Nature, 321, 849–851.Google Scholar
  38. TOWE, K.M., 1985. Studying mineral particulates of biogenic origin by transmission electron microscopy and electron diffraction: some guidelines and suggestions. In Magnetite Biomineralization and Magnetoreception in Organisms, (eds. J.L. Kirschvink, D.S. Jones B.J. McFadden ) pp 167–181 New York: Plenum Press.CrossRefGoogle Scholar
  39. TOWE, K.M. MOENCH, T.T., 1981. Electron-optical characterization of bacterial magnetite. Earth and Planetary Science Letters 52, 213–220.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • John F. Stolz
    • 1
  • Shih-Bin R. Chang
    • 2
  • Joseph L. Kirschvink
    • 2
  1. 1.Jet Propulsion Laboratory, 125-112California Institute of TechnologyPasadenaUSA
  2. 2.Division of Geological and Planetary Sciences, 170-25Institute of TechnologyPasadenaUSA

Personalised recommendations