Skip to main content

Abstract

The soda ocean hypothesis (Kempe & Degens, 1985) suggests an early alkaline ocean of high pH and low calcium and magnesium concentrations. The dissolved carbonates were gradually lost during the Precambrian, leaving the present sodium chloride ocean. The Precambrian paleontological record and the calcium physiology of living cells implicate that the stepwisebuildup of calcium in the ancient ocean was of primary importance for the generation of multicellular life and the onset of biocalcification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AHKONG, Q.F., TAMPION, W. and LUCY, J.A., 1975. Promotion of cell fusion by divalent cation ionophores. Nature, 256:208–209.

    Article  CAS  PubMed  Google Scholar 

  • ALLEGRE, C., 1985. The evolving Earth system. Terra Cognita, 5:5–14.

    Google Scholar 

  • AWRAMIK, S.M., SCHOPF, J.W. and WALTER, M.R., 1983. Filamentous fossil bacteria from Archean of Western Australia. Precambr. Res., 20:357–374.

    Google Scholar 

  • BONNER, J. T., 1971. Aggregation and differentiation in the cellular slime molds. Ann. Rev. Microbiol., 25:78–92.

    Article  Google Scholar 

  • BROCK, T.D., 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science, 179:480–483.

    Article  CAS  PubMed  Google Scholar 

  • BRYERS, G.G., 1985. Water quality of Lake Taupo and the Waikato River - a general overview. In Transport of Carbon and Minerals in Major World Rivers Vol. III (eds. E.T. Degens, S. Kempe and R. Herrera). Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 58:525–537.

    Google Scholar 

  • CAMPBELL, A.K., 1983. Intracellular Calcium. Its Universal Role as Regulator. 556 pp. Chichester: J. Wiley and Sons Ltd.

    Google Scholar 

  • CANTERFORD, G.S., 1980. Formation and regeneration of abnormal cells of the marine diatom Ditylum brightwellii (West) Grunow. J. Mar. Biol. Assoc. U.K., 60:243–253.

    Article  Google Scholar 

  • CARAFOLI, E. and PENNISTON, J.T., 1985. The calcium signal. Scientific American, 253:50–58.

    Article  Google Scholar 

  • CHAN, K.Y., 1976. Control of colony formation in Coelastrum microporum) (Chlorococcales, Chlorophyta). Phycologia, 15:149–154.

    Article  Google Scholar 

  • CHROST, R.J., 1978. Extracellular release in Chlorella vulgaris culture and role of bacteria accompanying algae in this process. Acta Microbiol. Polon., 27:55–62.

    CAS  Google Scholar 

  • CLOUD, P., 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2:351–387.

    CAS  Google Scholar 

  • CONWAY, E.J., 1943. The chemical evolution of the ocean. Proc. Roy. Irish Acad. Sect. B, XLVIII, 161–212.

    Google Scholar 

  • COOK, P. and SHERGOLD, J.H., 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian/Cambrian boundary. Nature, 308:231–236.

    Article  CAS  Google Scholar 

  • COTMORE, J.M., NICHOLS, JR, J. and WUTHIER, R.E., 1971. Phospholipid calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Nature, 172:1339–1341.

    CAS  Google Scholar 

  • DARBY, D.G., 1974. Reproductive modes of Huroniospora microreticulata from cherts of the Precambrian Gunflint Iron Formation. Geol. Soc. Amer. Bull., 85:1595–1596.

    Article  Google Scholar 

  • DEGENS, E.T., 1973. Accounting for the salts in the sea. Nature, 243:504–507.

    Article  CAS  Google Scholar 

  • DEGENS, E.T., 1976. Molecular mechanisms of carbonate, phosphate and silica deposition in the living cell. Top. Curr. Chem., 64:1–112.

    Article  CAS  Google Scholar 

  • DEGENS, E.T. and LKKOT, V., 1986. Ca2+-stress, biological response and particle aggregation in the aquatic habitat. Netherl. J. Sea Res., 20:109–116.

    Article  CAS  Google Scholar 

  • DEGENS, E.T., KAZMIERCZAK, J. and TEKKOT, V., 1986a. Cellular response to Ca2 + stress and its geological implications. Acta Palaeontol. Polon., 30 (for 1985), 115–135.

    Google Scholar 

  • DEGENS, E.T., KAZMIERCZAK, J. and TEKKOT, V., 1986b. Biomineralization and the carbon isotope record. Tschermaks Mineral. Petrogr. Mitt., 35:117–126.

    CAS  Google Scholar 

  • ERICSON, SJ.,1972. Toxicity of copper to Thalassiosira pseudonana in enriched inshore seawater. J. Phycol., and318–323.

    Google Scholar 

  • ERULKAR, S.D., 1981. The versatile role of calcium in biological systems. Interdise. Sci. Rev., 6:323–332. 1967.

    Google Scholar 

  • EUGSI’ER, H.P., 1967. Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded chert Science, 157: 1177–1180.

    Google Scholar 

  • EUGSLER, H.P., 1969. Inorganic bedded cherts from the Magadi Area, Kenya. Contr. Mineral. Petrol. 22:1–31.

    Google Scholar 

  • EUGSIER, H.P. and HARDIE, L.A., 1978. Saline lakes. In Lakes-Chemistry, Geology, Physics (ed. A. Lerman). pp. 237–293. New York: Springer Verlag.

    Google Scholar 

  • FANALE, F.P., 1971. A case for catastrophic early degassing of the Earth. Chem. Geol., 8:79–105.

    Article  CAS  Google Scholar 

  • FORD, T. D. and BREED, W. J., 1973. The problematic fossil Chuaria. Palaeontology, 16:535–550.

    Google Scholar 

  • FRANCHI, E. and CAMATINI, M., 1985. Evidence that a Ca2 + -chelator and a calmodulin blocker interfere with the structure of inter-Sertoli junctions. Tiss. Cell, 17:13–25.

    CAS  Google Scholar 

  • FRIEBELE, E.S., CORREL, D.L. and FAUST, M.A., 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Mar. Biol., 45:39–52.

    CAS  Google Scholar 

  • GARRELS, RM. and MACKENZIE, F.T., 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts in Natural Water Systems. pp. 222–242. Amer. Chem. Soc., Adv. Chem., 67.

    Google Scholar 

  • GARRELS, RM. and MACKENZIE, F.T., 1971. Evolution of Sedimentary Rocks. 397 pp. New York: W.W. Norton and Comp.

    Google Scholar 

  • GERLOFF, G. C. and FISHBECK, K. A., 1999. Quantitative cation requirements of several green and blue-green algae. J. Phycol., 5:109–114.

    Article  Google Scholar 

  • GILULA, N. B. and EPSIEIN, M. L., 1976. Cell-to-cell communication, gap junction and calcium. Sym. Soc. Exper. Biol., 30:257–272.

    CAS  Google Scholar 

  • HARDIE, LA. and EUGS IER, H.P., 1970. The evolution of closed-basin brines. Mineral. Soc. Amer., Spec. Publ., 3:273–290.

    Google Scholar 

  • HART, M.H., 1978. The evolution of the atmosphere of the Earth. Icarus, 33:23–39.

    Article  CAS  Google Scholar 

  • HELLMAN, B. and ANDERSON, A., 1978. Calcium and pancreatic ß-cell function. IV. Evidence that glucose and phosphate stimulate Ca incorporation into different intracellular pools. Biochim. Biophys. Acta, 541:483–491.

    Article  CAS  PubMed  Google Scholar 

  • HENDERSON-SELLERS, A. and COGLEY, J.G., 1982. The Earth’s early hydrosphere. Nature, 298:832–835.

    Article  Google Scholar 

  • HOFMANN, H. J., 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleont., 50:1040–1073.

    Google Scholar 

  • HOFMANN, H.J., 1977. The problematic fossil Chuaria from the late Precambrian Uinta Mountain Group, Utah. Precambr. Res., 4:1–11.

    Google Scholar 

  • HOFMANN, H.J.,1985. Precambrian carbonaceous megafossils. In Paleoalgology Contemporary Research and Applications,(eds. D.F. Toomey and M.H. Nitecki), pp. 20–33. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • HOFMANN, H.J. and GROTZINGER, J. P., 1985. Shelf-facies microbiota from the Odjick and Rocknest formations (Epworth Group; 1.89 Ga), northwestern Canada. Can. J. Ear. Sci, 22:1781–1792.

    Google Scholar 

  • HOLLAND, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans. 582 pp. Princeton, N.J.: Princeton Univ. Press.

    Google Scholar 

  • HUNTSMAN, S.A. and SUNDA, W.G., 1980. The role of trace metals in regulating the growth of phytoplankton. In The Physiological Ecology of Phytoplankton (ed. I. Morris), pp. 285–328. Boston: Blackwell Scientific.

    Google Scholar 

  • TEKKOT, V., 1982. Variations of dissolved organic matter during a plankton bloom: qualitative aspects based on sugar and amino acid analyses. Mar. Chem., 11:143–158.

    Google Scholar 

  • JONES, B. F., EUGSIER, H.P. and RETTIG, S.L., 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta, 41:53–72.

    CAS  Google Scholar 

  • KASTING, J.F., 1984. The Evolution of the prehiotic atmosphere. Origins of Life, 14:75–82.

    Article  CAS  PubMed  Google Scholar 

  • KAUFFMAN, E.G. and SIEIDTMANN, J.R., 1981. Are these the oldest metazoan trace fossils? J. Paleont., 55:923–947.

    Google Scholar 

  • KAZMIERCZAK, J., 1976. Devonian and modern relatives of the Precambrian Eosphaera: possible significance for the early eukaryotes. Lethaia, 9:39–50.

    Article  Google Scholar 

  • KAZMIERCZAK, J., TITEKKOT, V. and DEGENS, E.T., 1985. Biocalcification through time: environmental challenge and cellular response. Palaeontol. Zeit., 59:15–33.

    Google Scholar 

  • KEMPE, S., 1976. Zur Geohydrochemie des Alsterbeckens. Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 47:199–238.

    Google Scholar 

  • KEMPE, S., 1977. Hydrographie, Warven-Chronologie und organische Geochemie des Van Sees, OstTuerkei. Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 47:125–228.

    CAS  Google Scholar 

  • KEMPE, S., 1979. Carbon in the rock cycle. In The Global Carbon Cycle, SCOPE Rep. 13 (eds. B. Bolin, E.T. Degens, S. Kempe and P. Ketner). pp. 343–377. Chichester: J. Wiley and Sons.

    Google Scholar 

  • KEMPE, S., 1982. Long-term records of CO2 pressure fluctuations in fresh waters. In Transport of Carbon and Minerals in Major World Rivers, vol.1 (ed. E.T. Degens). Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 52:91–332.

    Google Scholar 

  • KEMPE, S. and DEGENS, E.T., 1985. An early soda ocean? Chem. Geol., 53:95–108.

    Article  CAS  Google Scholar 

  • KNOLL, A. H., 1983. Biological interactions and Precambrian eukaryotes. In Biotic Interactions in Recent and Fossil Benthic Communities, (eds. M. J. S. Tevesz and P. L. McCall), pp. 251–283. New York: Plenum Publ. Corp.

    Google Scholar 

  • KNOLL, A. H. and BARGHOORN, E. S., 1977. Archean microfossils showing cell division from the Swaziland System of South Africa. Science, 198:396–398.

    Article  CAS  PubMed  Google Scholar 

  • KNUTTON, S. and PAS ‘ERNAK, C. A., 1979. The mechanism of cell-cell fusion. Trends Biochem. Sci., 4:220–223.

    Google Scholar 

  • KOVAC, L., 1985. Calcium and Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 840:317–323.

    Article  CAS  Google Scholar 

  • KRATZ, W. and MYERS, J., 1955. Nutrition and growth of several blue-green algae. Amer. J. Botany, 42:282–287.

    Article  CAS  Google Scholar 

  • KRETSINGER, RH., 1976. Calcium binding proteins. Ann. Biochem., 45:239–262.

    Article  CAS  Google Scholar 

  • KRETSINGER, RH., 1977. Why does calcium play an informational role unique in biological systems? In Metal-Ligand Interactions in Organic Chemistry and Biochemistry (9th Jerusalem Symposium), pt. 2:(eds. B. Pullman and N. Goldbleum), pp. 257–263. Dordrecht: E. Lidel Publ. Co.

    Google Scholar 

  • KRETSINGER, RH., 1983; A comparison of the roles of calcium in biomineralization and in cytosolic signalling. In Biomineralization and Biological Metal Accumulation (eds. P. Westbroek and E. W. de Jong), pp. 123–131. Dordrecht: D. Reidel Publ. Co.

    Chapter  Google Scholar 

  • KUHN, W. R and KASTING, J.F., 1983. Effects of increased CO2 concentrations on surface temperature of the early Earth. Nature, 301:53–55.

    Article  CAS  Google Scholar 

  • KYLIN, A. and DAS, G., 1967. Calcium and strontium as micronutrients and morphogenetic factors for Scenedesmus. Phycologia, 6:201–210.

    Article  Google Scholar 

  • LABERGE, G.L., ROBBINS, E.I. and SCHMIDT, RG., 1984. New microfossil evidence of eukaryotes in early Proterozoic rocks (1.9 B.Y.) from the Lake Superior Region, North America. 27th Intern. Geol. Congr., Moscow, August 4–14:1984, Abstracts, vol. 1:sect. 01 to 03. pp. 241. Moscow: Nauka.

    Google Scholar 

  • LEE, C. and BADA, J.L., 1975. Amino acids in the equatorial Pacific, Sargasso Sea and Biscayne Bay. Limn. Oceanog., 22:502–510.

    Google Scholar 

  • LEHNINGER, A.L., 1982. Principles of Biochemistry.1005 pp. New York: Worth Publ. Inc.

    Google Scholar 

  • LINDGREN, S., 1982. Algal coenobia and leiospheres from the Upper Riphean of the Turukhansk region, eastern Siberia. Stockholm Contr. Geol., 38:1–20.

    Google Scholar 

  • MAISONNEUVE, J., 1982. The composition of the Precambrian ocean waters. Sedimentary Geology, 31:1–11.

    Article  CAS  Google Scholar 

  • MARMÉ, D., 1985. Calcium and Cell Physiology. 390 pp. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • OKELLEY, J., 1968. Mineral nutrition of algae. Ann. Rev. Plant Physiol., 19:89–112.

    Article  CAS  Google Scholar 

  • PFLUG, H.D., 1978. Yeast-like microfossils detected in oldest sediments of the earth. Naturwissenschaften, 65:611–615.

    Article  Google Scholar 

  • PFLUG, H.D. and Reitz, E., 1985. Earliest phytoplankton of eukaryotic affinity. Naturwissenschaften, 72:656–657.

    Article  Google Scholar 

  • REED, M.H., 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta, 46:513–528.

    CAS  Google Scholar 

  • ROBBINS, E.I., PORTER, K.G. and HABERYAN, K.A., 1985. Pellet microfossils: possible evidence for metazoan life in early Proterozoic time. Proc. Nat. Acad. Sci. U.S.A., 82:5809–5813.

    Article  CAS  Google Scholar 

  • ROGERS, JJ.W., 1978. Inferred composition of early Archaean crust and variation in crustal composition through time. In Archean Geochemistry (eds. B.F. Windley and S.M. Naqvi.) pp. 25–39. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • RONOV, A.B., 1968. Probable changes in the composition of seawater during the course of geological time. Sedimentology, 10:25–43.

    Article  CAS  Google Scholar 

  • SCHOPF, J.W., 1978. The evolution of the earliest cells. Sci. Amer., 239:85–102.

    Google Scholar 

  • SHELDON, RP., 1981. Ancient marine phosphates. Ann Rev. Ear. Planet. Sci., 9:251–284.

    Article  CAS  Google Scholar 

  • SIEVER, R, 1977. Early Precambrian weathering and sedimentation: An impressionistic view. In Chemical Evolution of the Early Precambrian (ed. C. Ponnamperuma), pp. 13–23. New York: Academic Press.

    Google Scholar 

  • STEGMANN, G., 1940. Die Bedeutung der Spurenelemente fuer Chlorella. Zeit. Bot., 35:385–422.

    CAS  Google Scholar 

  • SVERDRUP, H.U., JOHNSON, M.W. and FLEMING, R.H., 1970. The Oceans, their Physics, Chemistry, and General Biology. 1087 pp. Engelwood Cliffs, NJ.: Prentice-Hall.

    Google Scholar 

  • THOMAS, W. H., HALLIBAUGH, J. T. and SEIBERT, D. L. R, 1980. Effects of heavy metals on the morphology of some marine phytoplankton. Phycologia, 19:202–209.

    Article  Google Scholar 

  • THOMSEN, L., 1980. 129Xe on the outgassing of the atmosphere. J. Geophy. Res., 85:4374–4378.

    Article  CAS  Google Scholar 

  • TIMOFEEV, B.V., 1966. Microphytological Investigations of Ancient Formations. Acad. Sci. USSR, lab. Precambrian Geol. 145 pp. Leningrad: Nauka (in Russian).

    Google Scholar 

  • TRAINOR, F.R, 1969. Scenedesmus morphogenesis. Trace elements and spine formation. J. Phycol., 5:185–190.

    Article  CAS  Google Scholar 

  • TYNNI, R and UUTELA, A., 1984. Microfossils from the Precambrian Muhos Formation in Western Finland. Geol. Surv. Finland Bull., 330:5–38.

    Google Scholar 

  • UREY, H.C., 1951. The origin and development of the Earth and other terrestrial planets. Geochim. Cosmochim. Acta, 1:209–277.

    CAS  Google Scholar 

  • VEIZER, J., 1983. Geological evolution of the Archean-early Proterozoic Earth. In Earth’s Earliest Biosphere (ed. J.W. Schopf), pp. 240–259. Princeton N.J.: Princeton Univ. Press.

    Google Scholar 

  • VEIZER, J., 1985. Carbonates and ancient oceans: isotopic and chemical record on time scales of 107-109 years. Geophys. Monog. Amer. Geophs. Uni n, 32:595–601.

    Article  Google Scholar 

  • VEIZER, J. and COMPSTON, W., 1976. Sr/ Sr in Precambrian carbonates as an index of crustal evolution. Geochim. Cosmochim. Acta, 40:905–915.

    CAS  Google Scholar 

  • VEIZER, J., COMPSTON, W., HOEFS, J., and NIELSEN, H., 1982. Mantle buffering of the early oceans. Naturwissenschaften, 69:173–180.

    Article  CAS  Google Scholar 

  • VIDAL, G.K, 1984. The oldest eukaryotic cells. Sci. Amer., 250:48–57.

    CAS  Google Scholar 

  • VIDAL, G. and KNOLL, A.H., 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature, 297:57–60.

    Article  Google Scholar 

  • WALKER, J., 1983. Possible limits on the composition of the Archean ocean. Nature, 302:518–520.

    Article  CAS  Google Scholar 

  • WANG, F., 1985. Middle-Upper Proterozoic and lowest Phanerozoic microfossil assemblages from SW China and contiguous areas. Precambr. Res., 29:33–43.

    Google Scholar 

  • WEDEPOHL, KH., 1963. Einige Ueberlegungen zur Geschichte des Meerwassers. Fortsch. Geol. Rheinland Westfalen, 10:129–150.

    CAS  Google Scholar 

  • WOESE, C.R and FOX, G.E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Nat. Acad. Sci. U.S.A., 74:5088–5091.

    Article  CAS  Google Scholar 

  • WOESE, C.R, MAGRUM, L.J. and FOX, G. E., 1978. Archaebacteria. J. Mol. Evol., 11:245–252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kempe, S., Kazmierczak, J., Degens, E.T. (1989). The Soda Ocean Concept and Its Bearing on Biotic Evolution. In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics