Skip to main content

Strontium is Required in Artificial Seawater for Embryonic Shell Formation in Two Species of Bivalve Molluscs

  • Chapter
Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals

Abstract

Strontium is required in artificial seawater for the formation of the calcareous embryonic shell of the bivalves Mercenaria mercenaria (Linne, 1758) and Bankia gouldi (Bartsch, 1908). Embryos reared in defined media without strontium chloride become swimming larvae that appear normal except that the mineralized portion of the prodissoconch I shell is absent. Calcification is sensitive to small differences in strontium concentrations and a level of 6–8 ppm is required for normal development. Structural defects also result at high concentrations of this element, 3 to 10 times that of natural seawater, or when barium is substituted for strontium. Exposure to strontium is required only between hours 15–30 of the 40–45 hour embryonic period. Shell mineralization is initiated at hour 20 while the organic layer is observed with SEM at hour 18 and appears complete by hour 26. Larval shell growth (prodissoconch II) and statolith formation in M. mercenaria do not require the presence of strontium. These results are compared with those obtained earlier for the gastropod Aplysia californica (Cooper, 1863) and the implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANDERSON, O.R., 1981. Radiolarian fine structure and silica deposition. In Silicon and Siliceous Structure in Biological Systems (ed. T.L. Simpson and B.E. Volvani ), pp. 347–349. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • BIDWELL, J.P., PAIGE, J.A. and KUZIRIAN, A.M., 1986. Effects of strontium on the embryonic development of Aplysia californica. Biol. Bull., 170: 75–90.

    Google Scholar 

  • BLACKWELDER, P.L., WEISS, R.E., and WILBUR, K.M., 1976. Effects of calcium, strontium and magnesium on the coccolithophorid Cricospltaera ( Hymenomonas) carterae, I. Calcification. Mar. Biol., 34: 11–16.

    Google Scholar 

  • BRULAND, K.W., 1983. Trace elements in sea-water. In Chemical Oceanography (ed. J.P. Riley and G. Skirrow ), pp. 157–220. London: Academic Press.

    Google Scholar 

  • CARRIKER, M. R., 1961. Interrelation of functional morphology, behavior, and autecology in early stages of the bivalve Mercenaria mercenaria. J. Elisha Mitchell Sci. Soc., 177: 168–242.

    Google Scholar 

  • CULLINEY, J.L., 1975. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol., 29: 245–251.

    Google Scholar 

  • DODD, J.R, 1967. Magnesium and strontium in calcareous skeletons: a review. J. Paleont., 41:1313–1329. EYSTER, L.S., 1983. Ultrastructure of early embryonic shell formation in the opisthobranch gastropod Aeolidia papillosa. Biol. Bull., 165: 394–408.

    Google Scholar 

  • EYSI’ER, L.S., 1986. Shell inorganic composition and onset of shell mineralization during bivalve and gastropod embryogenesis. Biol. Bull., 170: 211–231.

    Google Scholar 

  • EYSTER, L.S. and MORSE, M.P., 1984. Early shell formation during molluscan embryogenesis, with new studies on the surf clam, Spisula solidissima. Amer. Zool., 24: 871–882.

    Google Scholar 

  • GUILLARD, R, 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals (ed. W.L. Smith and M.H. Chantey ), pp. 29–60. New York: Plenum Press.

    Chapter  Google Scholar 

  • GUNATILAKA, A., 1975. The chemical composition of some carbonate secreting marine organisms from Connemara Island. Proc. Roy. Irish Acad. Ser., B75: 543–556.

    Google Scholar 

  • GUNATILAKA, A., 1981. Biogeochemistry of strontium. In Handbook of Stable Strontium (ed. S.C. Skoryna ), pp. 19–46. New York: Plenum Press.

    Google Scholar 

  • JABLONSKI D. and LUTZ, R.A., 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev., 58: 21–89.

    Google Scholar 

  • KNIPRATH, E., 1981. Ontogeny of the molluscan shell field: a review. Zool. Scripta, 10: 61–79.

    Google Scholar 

  • LA BARBERA, M., 1974. Calcification of the first larval shell of Tridacna squamosa ( Tridacnidae: Bivalvia). Mar. Biol., 25: 233–238.

    Google Scholar 

  • LOWENSTAM, H.A., 1964. Ca/Sr ratio of skeletal aragonites from the recent marine biota at Palau and from fossil gastropods. In Isotopic and Cosmic Chemistry (ed. H. Craig, S.L. Miller, and G.J. Wasserburg ), pp. 114–132. Amsterdam: North Hollan Publishing Co.

    Google Scholar 

  • NATION, J.L., 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Techn., 58: 347–351.

    PubMed  CAS  Google Scholar 

  • RAVEN, C.P., 1966. Morphogenesis: The Analysis of Molluscan Development. 366pp. New York: Pergamon Press.

    Google Scholar 

  • SIMKISS, K., 1983. Trace elements as probes of biomineralization. In Biomineralization and Biological Metal Accumulation, Biological and Geological Perspectives,(ed. P. Westbroek and E.W. DeJong), pp. 363–371. Holland: Reidel, Dorcrecht.

    Chapter  Google Scholar 

  • WALLER, T.R., 1981. Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linne. Smithsonian. Contr. Zool., 328: 1–70.

    Google Scholar 

  • WEINER, S., 1984. Organization of organic matrix components in mineralized tissues. Amer. Zool., 24: 945–952.

    Google Scholar 

  • WEISS, R.E., BLACKWELDER, P.L. and WILBUR, K.M., 1976. Effects of calcium, strontium and magnesium on the coccolithophorid Cricsophaera (Hymenomonas) carterae. II. Cell division. Mar. Biol., 34: 17–22.

    Google Scholar 

  • WILBUR, K.M. and SALEUDDIN A.S.M., 1983. Shell formation. In The Mollusca. vol. 4. Physiology Part I. (ed. A.S.M. Saleuddin and K.M. Wilbur ), pp. 235–287. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallager, S.M., Bidwell, J.P., Kuzirian, A.M. (1989). Strontium is Required in Artificial Seawater for Embryonic Shell Formation in Two Species of Bivalve Molluscs. In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics