Skip to main content

High Capacity Calcium-Binding Proteins as Intermediate Calcium Carriers in Biological Mineralization

  • Chapter
Book cover Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals

Abstract

High-capacity calcium-binding macromolecules have been identified at mineralization fronts in heterodont bivalves, vertebrate tooth dentin and unicellular algae. They appear to be functionally similar to casein, the mineral ion carrier of milk. The bivalve phosphoprotein studied in this laboratory occurs as discrete high molecular weight (MW) particles in the hemolymph and extrapallial fluid and at the inner shell surface during mineral deposition. The phosphoprotein particles are characterized by a high content of aspartic acid, phosphoserine and histidine residues which comprise 80% or more of the peptide chain. The native particles contain a protected pool of calcium and phosphate ions and an exchangeable pool of calcium and magnesium ions. The phosphoprotein monomers are covalently cross-linked via histidinoalanine residues and ionically cross-linked via divalent cations into compact particles with a MW of about 50 million. High concentrations of phosphoprotein particles accumulate at the mineralization front during stimulated biomineralization, but neither inhibit mineral deposition nor influence the crystal habits. The particles are probably calcium ion transporters. However, the mechanism by which protein bound calcium is utilized to form calcium carbonate crystals is unknown.

The bivalve phosphoprotein particles share common characteristics with vertebrate tooth dentin and algal coccolithosomes which have been studied in other laboratories. All three are high-capacity calcium-binding macromolecules which have been localized at mineralization fronts. Both the bivalve phosphoprotein particles and dentin phosphophoryn are aspartic acid-rich, highly phosphosylated proteins which have a tendency to cross-link and fragment. Both coccolithosomes and the bivalve phosphoprotein occur as discrete high MW particles about 20–40 nm in diameter surrounding growing calcium carbonate crystals in vivo. It is postulated that intermediate calcium carriers in the form of high-capacity calcium-binding macromolecules may be a general phenomenon in the biological calcification of skeletal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADDADI, L., and WEINER, S., 1985. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Nat. Acad. Sci. U.S.A., 82:4110–4114.

    Article  CAS  Google Scholar 

  • BUTLER, W.T., BROWN, M., DIMUZIO, M.T., COTHRAN, W.C., and LINDE, A., 1983. Multiple Forms of rat dentin phosphorproteins. Arch. Biochem. Biophys., 225:178–186.

    Article  PubMed  CAS  Google Scholar 

  • CRENSHAW, MA, 1972. The soluble matrix from Mercenaria mercenaria shell. Biomineralization, 6:6–11.

    CAS  Google Scholar 

  • CRENSHAW, MA., and NEFF, J.M. 1969. Decalcification at the mantle-shell interface in mollusks. Amer. Zool., 9:881–885.

    Google Scholar 

  • DIMUZIO, M.T., and VEIS, A., 1978. The biosynthesis of phosphophoryns and dentin collagen in the continuously erupting rat incisor. J. Biol. Chem., 253:6845–6852.

    PubMed  CAS  Google Scholar 

  • FUJISAWA, R., KUBOKI, Y., and SASAKI, S., 1985. In vivo cleavage of dentin phosphophoryn following ß-elimination of its phosphoserine residues. Arch. Biochem. Biophys., 243:619–623.

    Article  PubMed  CAS  Google Scholar 

  • HOLT, C., 1982. Inorganic constituents of milk. III. The colloidial calcium phosphate of cow’s milk. J. Dairy Res., 49:29–38.

    Article  PubMed  CAS  Google Scholar 

  • KUBOKI, Y., FUJISAWA, R., AOYAMA, K., and SASAKI, S., 1979. Calcium-specific precipitation of dentin phosphoprotein: a new method of purification and the significance for the mechanism of calcification. J. Den. Res., 58:1926–1932.

    Article  CAS  Google Scholar 

  • LEE, S.L., KOSSIVA, D., and GLIMCHER, M.J., 1983a. Phosphoproteins of bovine dentin: evidence for polydispersity during tooth maturation. Biochemistry 22:2596–2601.

    Article  CAS  Google Scholar 

  • LEE, S.L, GLONEK, T., and GLIMCHER, M.J., 1983b. Nuclear magnetic resonance spectroscopic evidence for ternary complex formation of fetal dentin phosphorprotein with calcium and inorganic orthophosphate ions. Calc. Tiss. Intern., 35:815–818.

    Article  CAS  Google Scholar 

  • LEE, S.L., VEIS, A., and GLONEK, T., 1977. Dentin phosphoprotein: an extracellular calcium-binding protein. Biochemistry, 16:2971–2979.

    Article  PubMed  CAS  Google Scholar 

  • LYSTER, R.L.J., MANN, S., PARKER, S.B., and WILLIAMS, RT.P., 1984. Nature of micellar calcium phosphate in cows’ milk as studied by high-resolution electron microscopy. Biochim. Biophys. Acta, 801:315–317.

    Article  PubMed  CAS  Google Scholar 

  • MARSH, M.E., 1986a. Histidinoalanine, a naturally occurring cross-link derived from phosphoserine and histidine residues in mineral-binding phosphoproteins. Biochemistry, 25:2392–2396.

    Article  CAS  Google Scholar 

  • MARSH, M.E., 1986b. Biomineralization in the presence of calcium-binding phosphoprotein particles. J. Exp. Zool., 239:207–220.

    Article  CAS  Google Scholar 

  • MARSH, M.E. and SASS, R.L., 1985. Distribution and characterization of mineral-binding phosphoprotein particles in Bivalvia. J. Exp. Zool., 234:237–242.

    Article  PubMed  CAS  Google Scholar 

  • MARSH, M.S., and SASS, R.L.; 1984. Phosphoprotein particles: calcium and inorganic phosphate binding structures. Biochemistry, 23:1448–1456.

    Article  PubMed  CAS  Google Scholar 

  • MARSH, M.E., and SASS, R.L., 1983. Calcium-binding phosphoprotein particles in the extrapallial fluid and innermost shell lamella of clams. J. Exp. Zool., 266:193–203.

    Article  Google Scholar 

  • MASTERS, P.M., 1985. In vivo decomposition of phosphoserine and serine in noncollagenous protein from human dentin. Calc. Tiss. Intern., 37:236–241.

    Article  CAS  Google Scholar 

  • MCGANN, T.C.A., KEARNEY, RD., BUCHHEIM, W., POSNER, A.S., BETTS, F. and BLUMENTHAL, N.C., 1983. Amorphous calcium phosphate in casein micelles of bovine milk. Calc. Tiss. Intern., 35:821–823.

    Article  CAS  Google Scholar 

  • MEPHAM, T.B., GAYE, P., and MERCIER, J.C., 1982. Biosynthesis of milk proteins. In Developments in Dairy Chemistry-1 (ed. P. F. Fox), pp. 115–156. New York: Elsevier.

    Google Scholar 

  • OUTKA, D.E., and WILLIAMS, D.C., 1971. Sequential coccolith morphogenesis in Hymenomonas carterae. J. Protozool., 18:285–297.

    PubMed  CAS  Google Scholar 

  • PITA, J.C., CUERVO, L.A., MADRUGA, J.E., MULLER, F.J., and HOWELL, D.S., 1970. Evidence for a role of protein polysaccharides in regulation of mineral phase separation in calcifing cartilage. J. Clin. Invest., 49:2188–2197.

    Article  PubMed  CAS  Google Scholar 

  • PRINCE, C.W., OOSAWA, T., BUTLER, W.T., TOMANA, M., BROWN, A.S., BHOWN, M., and SCHROHENLOHER, RE., 1987. Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J. Biol. Chem., 262:2900–2907.

    PubMed  CAS  Google Scholar 

  • RUNNEGAR, B., 1989. This volume.

    Google Scholar 

  • SASS, RL. and MARSH, M.E., 1983. N t-and Np Jr-Histidinoalanine: naturally occurring cross-linking amino acids in calcium-binding phosphoproteins. Biochem. Biophys. Res. Comm., 114:304–309.

    Article  PubMed  CAS  Google Scholar 

  • SCHMIDT, D.G., 1982. Association of caseins and casein micelle structure. In Developments in Dairy Chemistry-1 (ed. P.F. Fox, pp. 61–86). New York, Elsevier.

    Google Scholar 

  • SCHMIDT, D.G., 1980. Colloidial aspects of casein. Netherlands Milk Dairy J., 34:42–64.

    CAS  Google Scholar 

  • SIKES, C.S., and WHEELER, A.P., 1983. A systematic approach to some fundamental questions of carbonate calcification. In Biomineralization and Biological Metal Ion Accumulation (ed. P. Westbroek and E.W. de Jong), pp. 285–289. Dordrecht: D. Reidel Publishing Co.

    Chapter  Google Scholar 

  • SILER-SIEVENSON, W.G., and VEIS, A., 1983. Bovine dentin phosphophryn: composition and molecular weight. Biochemistry, 22:4326–4335.

    Google Scholar 

  • SWAISGOOD, H.E., 1982. Chemistry of milk protein. In Developments in Dairy Chemistry-1 (ed. P.F. Fox), pp. 1–59. New York: Elsevier.

    Google Scholar 

  • VAN DER WAL, P., DE JONG, E.W., WESTBROEK, P., DE BRUIJN, W.C., and MULDERSTAPEL, A.A., 1983a. Polysaccharide localization, coccolith formation, and Golgi dynamics in the Coccolithiphorid Hymenomonas carterae. J. Ultrastr. Res., 85:139–158.

    Google Scholar 

  • VAN DER WAL, P., DE JONG, E.W., WESTBROEK, P., and DE BRUIJN, W.C., 1983b. Calcification in the Coccolithophorid alga Hymenomonas carterae. In Environmental Biogeochemistry, Ecological Bulletin No. 35 (ed. R Hallberg), pp. 251–258. Stockholm: Publishing House/FRN.

    Google Scholar 

  • VEIS, DJ., ALBINDER, T.M., CLOHISY, J., RANIMA, M., SABSAY, B., and VEIS, A., 1986. Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. J. Exp. Zool., 240:35–46.

    Article  PubMed  CAS  Google Scholar 

  • WILBUR, KM., and BERNHARDT, A.M., 1982. Mineralization of molluscan shell: effects of free and polyamino acids on crystal growth rate in vitro. Amer. Zool., 22:952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marsh, M.E. (1989). High Capacity Calcium-Binding Proteins as Intermediate Calcium Carriers in Biological Mineralization. In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics