Extra-, Inter-, and Intracellular Mineralization in Invertebrates and Algae

  • Norimitsu Watabe
  • Roni J. Kingsley

Abstract

Biomineralization occurs extra-, inter- or intracellularly. Almost all structures of extracellular formation are secretory products of multicellular epithelial tissues. Intracellular mineralization is most commonly seen within vacuoles and vesicles. Many of the structures formed intracellularly eventually become extracellular entities, and two methods are known for the intra-extracellular transition. Intercellular mineralization is not common.

There does not seem to be standard methods of calcium transport characterizing the extra-and intracellular mineralization. However, much work is needed before conclusions may be drawn concerning the ion transport for mineralization.

The majority of structures originated in vacuoles and vesicles exhibit species-specific, almost symmetrical, and highly intricate morphology. Discussion is given on several factors which have been considered to affect the morphogenesis of these structures. The presence of regularly spaced inhibitors of crystal growth in the vacuoles/vesicles is suggested as one of the possible factors controlling the morphogenesis. The intracellularly formed structures attain a uniform size characteristic for each structure at its maturity, but not much is known concerning the mechanisms to regulate the final size. Some taxa-specific neurosecretory products or analogies and/or precursors of hormonal substances could regulate the mineralization.

Keywords

Calcium Transport Siliceous Sponge Emiliania Huxleyi Siliceous Structure Hermatypic Coral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANDRÉ, J., and FAURÉ-FREMIET, E., 1967. Formation et structure des concretions calcaires chez Poronodon margani Khal. Journal Microscopic, 6:391–398.Google Scholar
  2. BENSON, S.C., BENSON, N.C., and WILT, F., 1986. The organic matrix of the skeletal spicule of sea urchin embryos. Journal Cell Biology, 102:1878–1886.CrossRefGoogle Scholar
  3. BLACKWELDER, P.L., 1976. Temperature relationships in coccolith morphology and dimension in fossil and living E,niliania huxleyi (Chrysophyta: Haptophyceae) Ph.D. thesis,106 pp. Columbia: University of South Carolina.Google Scholar
  4. BLACKWELDER, P.L., BRAND, L.E., and GUILLARD, R.L., 1979. Coccolith morphology and paleoclimatology. II. Cell ultrastructure and formation of coccoliths in Cycloccolithina leptopora (Murray and Blackman) Wilcoxon and Gephyrocapsa oceanica Kamptner. Scanning Electron Microscopy, 1979, 2:417–420.Google Scholar
  5. BORMAN, A.H., DE JONG, E.W., IIUIZINGA, M., and WESTBROEK, P., 1983. Inhibition of CaCO3 precipitation by a polysaccharide associated with coccoliths of Emiliania huxleyi. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E.W. de Jong), pp. 303–305. Dordrecht: D. Reidel Publishing Co.Google Scholar
  6. CRANG, R.E., IIOLSEN, R.C., and HITT, J.B., 1968. Calcite production in mitochondria of earthworm calciferous glands. Biological Sciences, 18:299–301.Google Scholar
  7. DEJONG, E.W., BOSCH, L., and WESTBROEK, P., 1976. Isolation and characterization of a Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Hay and Mohler. European Journal Biochemistry, 70:611–621.CrossRefGoogle Scholar
  8. DE JONG, E.W., RENS, L., WESTBROEK, P., and BOSCH, L., 1979. Biocalcification by the marine alga Emiliania huxleyi (Lohmann) I lay and Mohler. European Journal Biochemistry, 99:559–567.CrossRefGoogle Scholar
  9. DEMOS, L.J., LEROITII, D., SHILOACII, J., and ROTH, J., 1985. Salmon calcitonin-like immunoactivity in extracts of Tetrahymena pyriformis Hormone Metabolism Research, 17:82–85.CrossRefGoogle Scholar
  10. DOGTEROM, A.A., and DODERER, A., 1981. A hormone dependent calcium-binding protein in the mantle edge of the freshwater snail Lymnaea stagnalis Calcified Tissue International, 33:505–508.PubMedCrossRefGoogle Scholar
  11. DONACHY, J.E., 1984. Arm regeneration in the brittle star Ophiotlu•ic angulata (Say): Salinity and calcium concentration effects and ultrastructure of ossicle formation. M.S. thesis, 90 pp. Columbia: University of South Carolina.Google Scholar
  12. DUNKELBERGER, D.G., and WATABE, N., 1974. An ultrastructural study on spicule formation in the pennnatulid colony Renifla reniformis Tissue and Cell, 6:573–586.PubMedCrossRefGoogle Scholar
  13. FLIK, G., VANRIJS, J.H., and WENDELAAR BONGA, S.E.,1985. Evidence for high-affinity Ca2+-ATPase activity and ATP-driven Ca + -transport in membrane preparations of the gill epithelium of the cichlid fish Oreochromis mossambicus Journal Experimental Biology, 119:335–347.Google Scholar
  14. FOURNIE, J., and CHÉTAIL, M., 1984. Calcium dynamics in land gastropods. American Zoologists, 24:857–870.Google Scholar
  15. GARRONE, R., SIMPSON, T.L., and POTTBOUMENDIL, J., 1981. Ultrastructure and deposition of silica in sponges. In Silicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 495–525. New York: Springer-Verlag.CrossRefGoogle Scholar
  16. GOURANTAN, J., 1968. Composition, structure et mode de formation des concretions minerales dans l’intestin moyen des hontopteres Cercopides. Journal Cell Biology, 37:316–328.CrossRefGoogle Scholar
  17. GRAF, F., 1968. Le stockage de calcium avant la mue chez les Crustacés Amphipodes Orchestia (talitridé) et Niphargus (Gammaridé hypogé). Doctoral Thesis, Dijon, CNRS no. 2690:1–216.Google Scholar
  18. GRAF, F., 1971. Dynamique du calcium dans l’epithélium des caecum postérieurs d’Orchestia cavimana Heller (Crustacé, Amphipode). Rôle de l’espace intercellulaire. Comptes rendus des séances de l’Académie des Sciences, Paris, 273:1828–1831.Google Scholar
  19. GRAF, F., and MEYRAN, J-C., 1983. Premolt calcium secretion in midgut posterior caeca of the Crustacean Orchestia ultrastructure of the epithelium. Journal Morphology, 177:1–23.CrossRefGoogle Scholar
  20. HARRISON, F.W., DUNKELBERGER, D.G., WATABE, N., and STUMP, A.B., 1976. The cytology of the testaceous rhizopod Lesquereusia spiralis (Ehrenberg) Penard. II. Ultrastructure and shell formation. Journal Morphology, 150:343–358.CrossRefGoogle Scholar
  21. HARTMAN, W.D., 1981. Form and distribution of silica in sponges. in Silicon and Siliceous Structure in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 453–493. New York: Springer-Verlag.Google Scholar
  22. JOHNSON, I.S., 1980. The ultrastructure of skeletogenesis in hcrmatypic corals. International Review Cytology, 67:171–214.CrossRefGoogle Scholar
  23. JONES, W.C., 1970. The composition, development, form and orientation of calcareous sponge spicules. Symposia Zoological Society London, 25:91–121.Google Scholar
  24. JONES, C.W.,1978. Spicule growth and production in juvenile Sycon ciliatunt Colloques internationaux du CNRS, No. 291:67–77.Google Scholar
  25. KINGSLEY, R.J., 1984. Spicule formation in the invertebrates with special reference to the gorgonian Leptogorgia virgulata American Zoologist, 24:883–891.Google Scholar
  26. KINGSLEY, R.J., and WATABE, N., 1982a. Ultrastructure of the axial region in Leptogorgia virgulata (Cnidaria: Goronaceae). Transactions of the American Microscopical Society, 101:325–339.CrossRefGoogle Scholar
  27. KINGSLEY, R.J., and WATABE, N., 1982b. Ultrastructural investigation of spicule formation in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell and Tissue Research, 22:325–334.CrossRefGoogle Scholar
  28. KINGSLEY, R.J., and WATABE, N., 1984. Synthesis and transport of the organic matrix of the spicules in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). An autoradiographic investigation. Cell and Tissue Research, 235:533–538.PubMedCrossRefGoogle Scholar
  29. KINGSLEY, R.J., and WATABE, N., 1985a. An autoradiographic study of calcium transport in spicule formation in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Cell Tissue Research, 239:305–310.Google Scholar
  30. KINGSLEY, R.J., and WATABE, N., 1985b. Ca-ATPase localization and inhibition in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). Journal Experimental Marine Biology and Ecology, 93:157–167.CrossRefGoogle Scholar
  31. KINCHINGTON, D., 1980. Localization of intracellular calcium within the epidermis of a cool temperate coral. In Development and Cellular Biology of Coelenterates (ed. P. Trardent and R. Tardent), pp. 143–148. Amsterdam: North-Holland Biomedical Press.Google Scholar
  32. KLAVENESS, D., 1972. Coccolithus huxleyi (Lohmann) Karnptner. I. Morphological investigations on the vegetable cell and the process of coccolith formation. Protistologica, 8:335–346.Google Scholar
  33. KNIPRATH, E., 1974. Ultrastructure and growth of the sea urchin tooth. Calcified Tissue Research, 14:211–228.PubMedCrossRefGoogle Scholar
  34. KNIPRATH, E., and LAFARGUE, F., 1980. Spicule formation in the Didemnidae (Compound Ascidians). In The Mechanisms of Biomineralization in the Animals and Plants (ed. M. Omori and N. Watabe), pp. 31–36. Tokyo: Tokai University Press.Google Scholar
  35. LEADBEATER, B.S.C., 1981. Ultrastructure and deposition of silica in loricate Choanoflagellates. Silicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 295–322. New York: Springer-Verlag.Google Scholar
  36. LEDGER, P.W., and FRANC, S., 1978. Calcification of the collagenous axial skeleton of Veretillium cynomoriun Pall (Cnidaria: Pennatulacea). Cell and Tissue Research, 192:249–266.PubMedCrossRefGoogle Scholar
  37. LEDGER, P.W., and JONES, W.C., 1977. Spicule formation in the calcareous sponge Sycon ciliatum Cell and Tissue Research, 181:553–567.PubMedCrossRefGoogle Scholar
  38. LEGEROS, R.Z., PAN, C-M., SUGA, S., and WATABE, N., 1985. Crystallo-chemical properties of apatite in atremate brachiopod shells. Calcified Tissue International, 37:98–100.PubMedCrossRefGoogle Scholar
  39. LEHNINGER, A.L., 1983. The possible role of mitochondria and phosphocitrate in biological calcification. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E.W. de Jong), pp. 107–121. Dordrecht: D. Riedel Publishing Co.CrossRefGoogle Scholar
  40. LEROITH, D., LESNIAK, M.A., and ROTH, J., 1981. Insulin in insects and annelids. Diabetes, 30:70–75.PubMedCrossRefGoogle Scholar
  41. LEVI, S.F., 1972. Effects of salinity on growth, calcification, and ultrastructure in a calcareous alga, Hymenomonas carterae M.S. thesis, pp. 148, Columbia: University of South Carolina.Google Scholar
  42. MANN, S., 1983. Mineralization in biological systems. Structure and Bonding, 54:125–174.CrossRefGoogle Scholar
  43. MANN, S., 1987. The role of inorganic phosphate in iron oxide biomineralization. In Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals (ed. R.E. Crick), pp. New York: Plenum Press.Google Scholar
  44. MCGRORY, C.E., and LEADBEATER, B.S.C., 1981. Ultrastructure and deposition of silica in the Chrysophyceae. In Silicon and Siliceous Structure in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 201–230. New York: Springer-Verlag.CrossRefGoogle Scholar
  45. MORGAN, A.J., 1981. A morphological and electron-microbe study of the inorganic composition of the mineralized secretory products of the calciferous gland and chloragogenous tissue of the earthworm, Lumbricus terrestris L. The distribution of injected strontium. Cell and Tissue Research, 220:829–844.PubMedCrossRefGoogle Scholar
  46. MYRAN, J.C., GRAF, F., and NICAISE, G., 1984. Calcium pathways through a mineralizing epithelium in the crustacean Orchestia in premolt: Ultrastructural cytochemistry and x-ray microanalysis. Tissue and Cell, 16:269–286.CrossRefGoogle Scholar
  47. NEFF, J.M., 1971. Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caentlens Zeitschrift für Zellforschung, 120:160–186.CrossRefGoogle Scholar
  48. NEFF, J.M., 1972. Ultrastructure of the outer epithelium of the mantle in the clam Mercenaria mercenaria in relation to calcification of the shell. Tissue and Cell, 4:591–600.PubMedCrossRefGoogle Scholar
  49. OKAZAKI, K., MCDONALD, K., and INOUE, S., 1980. Sea urchin larval spicule observed with scanning electron microscope. In The Mechanisms of Biomineralization in the Animals and Plants (ed. M. Omori and N. Watabe), pp. 159–168. Tokyo: Tokai University Press.Google Scholar
  50. PAN, C.-H., 1985. Ultrastructural and physiological investigations of the mineralization of the inarticulate brachiopod, Glottidia pyramidata (Simpson). Ph.D. thesis, pp. 165. Columbia: University of South Carolina.Google Scholar
  51. RIEDEL, W.R., and SANFILIPPO, A., 1981. Evolution and diversity of form in Radiolaria. In Silicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 323–343. New York: Springer-Verlag.CrossRefGoogle Scholar
  52. RIEGER, R.M., and STERRER, M., 1975a. New spicular skeletons in Turbellaria and the occurrence of spicules in marine meiofauna. I. Zietschrift für Zoologische Systematik und Evolutionsforschung, 13:207–248.CrossRefGoogle Scholar
  53. RIEGER, R.M., and STERRER, M., 1975b. New spicular skeletons in Turbellaria and the occurrence of spicules in marine meiofauna. II. Zietschrift für Zoologische Systematik und Evolutionsforschung, 13:249–278.Google Scholar
  54. ROER, R., DILLAMAN, R., 1984. The structure and calcification of the crustacean cuticle. American Zoologist, 24:893–909.Google Scholar
  55. SHIMIZU, M., and YAMADA, J., 1980. Sclerocytes and crystal growth in the regeneration of sea urchin test and spines. In The Mechanisms of Biomineralization in the Animals and Plants (ed. M. Omori and N. Watabe), pp. 169–178. Tokyo: Tokai University Press.Google Scholar
  56. SIKES, C.S., and WIIEELER, A.P., 1983. A systematic approach to some fundamental questions of carbonate calcification. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E.W. de Jong), pp. 285–289. Dordrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
  57. SIKES, C.S., and WHEELER, A.P., 1986. The organic matrix from oyster shell as a regulator of calcification in vivo Biological Bulletin, 170:494–505.CrossRefGoogle Scholar
  58. SIKES, C.S., and WILBUR, K.M., 1982. Functions of coccolith formation. Limnology and Oceanography, 27:18–26.CrossRefGoogle Scholar
  59. SIMKISS, K., 1974. Calcium translocation by cells. Endeavour, 33:119–124.PubMedCrossRefGoogle Scholar
  60. SIMKISS, K., 1976a. Intracellular and extracellular routes in biomineralization. Symposia Society Experimental Biology, 30:423–444.Google Scholar
  61. SIMKISS, K., 1976b. Cellular aspects of calcification. In Mechanisms of Mineralization in the Invertebrates and Plants (ed. N. Watabe and KM. Wilbur), pp. 1–32. Columbia: University of South Carolina Press.Google Scholar
  62. SIMKISS, K., and MASON, A.Z., 1983. Metal ions: metabolic and toxic effects. In The Mollusca, Vol. 2, (ed. P.W. Hochachka), pp. 101–164. New York: Academic Press.Google Scholar
  63. SIMKISS, K., and WILBUR, K.M., 1977. The molluscan epidermis and its secretions. Symposia of the Zoological Society of London, 39:35–76.Google Scholar
  64. SIMPSON, T.L., LANGENBRUCH, P-F., and SCALERALIACI, L., 1985. Silica spicules and axial filaments of the marine sponge Stelletta giubii (Porifera, Demospongiae). Zoomorphology, 105:375–382.CrossRefGoogle Scholar
  65. SIMPSON, T.L., and VOLCANI, B.E., 1981. Introduction. In Silicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 1–12. New York: Springer-Verlag.CrossRefGoogle Scholar
  66. SPANGENBERG, D.B., 1971. Thyroxine induced metamorphosis in Aurelia Journal Experimental Zoology, 178:183–194.CrossRefGoogle Scholar
  67. SPANGENBERG, D.B., 1974. Thyroxine in early strobilation in Aurelia aurica American Zoologist, 14:825–834.Google Scholar
  68. STRICKER, S.A., 1984. Styletogenesis in nemertean worms: The ultrastructure of organelles involved in intracellular calcification. Journal Morphology, 179:119–134.CrossRefGoogle Scholar
  69. STRICKER, S.A., 1985. The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Ilolothuroida). Zoomorphology, 105:209–222.CrossRefGoogle Scholar
  70. SULLIVAN, C.W., and VOLCANI, B.E., 1981. Silicon in the cellular metabolism of diatoms. InSilicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 15–42. New York: Springer-Verlag.CrossRefGoogle Scholar
  71. VAN DER WAL, P., 1984. Calcification in two species of coccolithophorid algae. Gus Papers Geology, Series 1, No. 20–1984:1–112.Google Scholar
  72. VOLCANI, B.E., 1981. Cell wall formation in diatoms: morphogenesis and biochemistry. In Silicon and Siliceous Structures in Biological Systems (ed. T.L. Simpson and B.E. Volcani), pp. 157–200. New York: Springer-Verlag.CrossRefGoogle Scholar
  73. VOVELLE, J., 1973. Transfert du calcium à travers l’epithélium du repli opercularie chez Astrea rugosa L. (Turbinidae). Malacologia, 14:47–51.Google Scholar
  74. WATABE, N., 1967. Crystallographyic analysis of the coccolith of Coccolithus huxleyi Calcified Tissue Research, 1:114–121.PubMedCrossRefGoogle Scholar
  75. WATABE, N., 1974. Crystal growth of calcium carbonate in biological systems. Journal Crystal Growth, 24/25:116–122.CrossRefGoogle Scholar
  76. WATABE, N., 1981. Crystal growth of calcium carbonate in the invertebrates. Journal Crystal Growth and Characterization, 4:99–147.CrossRefGoogle Scholar
  77. WATABE, N., BERNHARDT, A.M., KINGSLEY, R.J., and WILBUR, K.M., 1986. Recalcification of decalcified spicule matrices of the gorgonian Leptogorgia virgulata Transactions of the American Microscopical Society (In press).Google Scholar
  78. WATABE, N., and BLACKWELDER, P.L., 1980. Ultrastructure and calcium localization in the mantle epithelium of the freshwater gastropod Pomacea paludosa during shell regeneration. InThe Mechanism of Biomineralization in Animals and Plants (ed. M. Omori and N. Watabe), pp. 131–144. Tokyo: Tokai University Press.Google Scholar
  79. WATABE, N., MEENASKSHI, V.R., BLACKWELDER, P.L., KURTZ, E.M. and DUNKELBERGER, D.G., 1976. Calcareous spherules in the gastropod, Pomacea paludosa. In The Mechanisms of Mineralization in the Invertebrates and Plants (ed. N. Watabe and K.M. Wilbur), pp. 283–308. Columbia: University of South Carolina Press.Google Scholar
  80. WATABE, N., and PAN, C-M., 1984. Phosphatic shell formation in atremate brachiopods. American Zoologist, 24:977–985.Google Scholar
  81. WATABE, N., and WILBUR, K.M., 1966. Effects of temperature on growth, calcification and coccolith form in Coccolithus huxleyi Limnology and Oceanography, 11:567–575.CrossRefGoogle Scholar
  82. WHEELER, A.P., GEORGE, J.W., and EVANS, C.A., 1981. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science, 212:1397–1398.PubMedCrossRefGoogle Scholar
  83. WILBUR, K.M., 1980. Cells, crystals and skeletons. In The Mechanisms of Biomineralization in Animals and Plants (ed. M. Omori and N. Watabe), pp.3–11. Tokyo: Tokai University Press.Google Scholar
  84. WILBUR, K.M., 1985. Topics in molluscan mineralization: Present status, future directions. American Malacological Bulletin, Special Edition, 1:51–58.Google Scholar
  85. WILBUR, K.M., and SALEUDDIN, A.S.M., 1984. Shell formation. In the Mollusca, Vol. 4 (ed. A.S.M. Saleuddin and K.M. Wilbur), pp. 235–284. New York: Academic Press.Google Scholar
  86. WILBUR, K.M., and WATABE, N., 1963. Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi Annals New York Academic Sciences, 109:82–112.CrossRefGoogle Scholar
  87. WOOD, D., 1973. Calcium movement and electrogenesis across the isolated clam mantle. Ph.D.thesis, 122 pp. Pullman: Washington State University, 122 pp.Google Scholar
  88. YASUMASU, I., MITSUNAGA, K., and FUJINO, Y., 1985. Mechanism for electrosilent Ca2+ transport to cause calcification of spicules in sea urchin embryos. Experimental Cell Research, 159:80–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Norimitsu Watabe
    • 1
  • Roni J. Kingsley
    • 2
  1. 1.Electron Microscopy Center and Department of BiologyUniversity of South CarolinaColumbiaUSA
  2. 2.Dental Research CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations