Skeletal Organization in Caribbean Acropora Spp. (Lamarck)

  • Brent R. Constantz


The size and morphology of calcium carbonate crystals of the exoskeletons of the Caribbean Scleractinian coral species of the genus Acoropora are described. The fundamental units of the skeleton are the trabeculae, which are linearly aggrading spherulitic fans of polycrystalline aragonite fiber bundles. Each spherulitic fan originates from a center of calcification (Ogilvie, 1896; Wells, 1956) that is composed of packets of submicron calcium carbonate crystals in an amorphous matrix. The nucleating packets appear to have an intracellular origin and their production stimulated by zooxanthellate photosynthesis.


Fiber Bundle White Arrow Black Arrow Calcium Carbonate Crystal Petrographic Thin Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADDADI, L. and WEINER, S., 1985. Interactions between acidic proteins and crystals: Steriochemical requirements in biomineralization. Proc. Nat. Acad. Sci., USA, 82: 4110–4114CrossRefGoogle Scholar
  2. BARNES, D.J., 1970. Coral skeletons: an explanation of their growth and structure. Science, 170: 1305–1308.PubMedCrossRefGoogle Scholar
  3. BARNES, D.J., 1972. The structure and function of growth ridges in scleractinian corals. Proc. Roy. Soc. London B., 182: 331–350.CrossRefGoogle Scholar
  4. BARNES, D.J., and CROSSLAND, C.J., 1980. Diurnal and seasonal variations in the growth of a staghorn coral measured by time-lapse photography. Limn. Ocean., 25: 1113–1117.CrossRefGoogle Scholar
  5. BRYAN, W.H., and HILL, D., 1941. Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc. Royal Soc., Queensl., 52: 78–91.Google Scholar
  6. CHALKER, B.E., 1976. Calcium transport during skeletogenesis in hermatypic corals. Comp. Biochem. and Physiol. A., 54: 455–459.CrossRefGoogle Scholar
  7. CRENSHAW, MA., 1984. Mechanisms of normal biological mineralization of calcium carbonates, in Nan-collas, G.H., ed. Biological Mineralization and Demineralization, Dahlem Konferenzen 1982. New York, Springer. 243–257.Google Scholar
  8. CONSTANTZ, B.R., 1984. Comparative function of microarchitecture inAcropora cerviornis and Acropora palmata. Palaeontographica Americana, 54: 48–52.Google Scholar
  9. CONSTANTZ, B.R., 1986. Coral skeleton construction: a physiochemically dominated process. Paliaos, 1: 152–157.CrossRefGoogle Scholar
  10. GLADFELTER, E.H., 1982. Skeletal development inAcropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs, 1: 45–51.CrossRefGoogle Scholar
  11. GLADFELTER, E.H., 1983. Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate acretion. Coral Reefs, 2: 91–100.CrossRefGoogle Scholar
  12. GOREAU, T.F., 1959. The physiology of skeletal formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull., 116: 59–75.CrossRefGoogle Scholar
  13. GOREAU, T.F., 1961. Problems of growth and calcium deposition in reef corals. Endeavor, 20: 32–39.CrossRefGoogle Scholar
  14. GOREAU, T.F., 1963. Calcium carbonate deposition by coralline algae and by corals in relation to their roles as reef builders. Ann. New York Acad. Sci., 190: 127–167.Google Scholar
  15. GOREAU, T.F., and BOWEN, B.T., 1955. Calcium uptake by a coral. Science, 122: 1188–1189.PubMedCrossRefGoogle Scholar
  16. HAYASI, K., 1937. On the Detection of calcium in the calicoblasts of some reef corals. Palaos Trop. Biol. Sta. Stud., no. 2 (8): 169–179.Google Scholar
  17. ISA, Y., and YAMAZATO, K., 1981. The ultrastructure of the calicoblast and related tissues in Actopora liebes (Dana). Proc. Fourth Inter. Coral Reef Sym., 2: 99–105.Google Scholar
  18. JAMES, N.P., 1974. Diagenesis of scleractinial corals in the subaerial vadose environment. J. of Sed. Pet., 48: 785–799.Google Scholar
  19. JACKSON, J., and GLADFELTER, E.H., 1985. Ultrastructure of the tissue/skeleton interface of Actopora cervicornis over a diel cycle. Proc. Fifth Inter. Coral Reef Cong., Tahiti, UNESCO, in press.Google Scholar
  20. JOHNSTON, I.S., 1980. The ulrastructure of skeletogenesis in hermatypic corals. Inter. Rev. of Cytology, 67: 171–214.CrossRefGoogle Scholar
  21. KINCHINGTON, D., 1980. Localisation of intracellular calcium within the epidermis of a cool temperate coral. In Tardent, P. and Tardent, R. (eds.), Developmental and cellular biology of coelenterates. Elsevier., 143–147.Google Scholar
  22. LIGHTLY, R.G., 1985. Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene Barrier Reef, Southeast Florida Shelf. In Schneiderman, N. and Harris, P.M. (eds.) SEPM Spec. Pub. 36, Carbonate Cements., 123–151.CrossRefGoogle Scholar
  23. LE TISSIER, M., and BROWN, B.E., 1985. Diurnal patterns of skeletal formation in Pocillopora damicomis (Linnaeus) Proc. Fifth Inter. Coral Reef Cong., Tahiti, UNESCO, in press.Google Scholar
  24. MUSCATINE, L., 1967. Gycerol extretion by symbiotic algae from carals and Tridacna and its control by the host. Science, 156: 516–519.PubMedCrossRefGoogle Scholar
  25. PEARSE, V.B., and MUSCATINE, L., 1971. Role of symbiotic algae (zooxanthellae) in coral calcification. Biol. Bull., Woods Hole., 141: 350–363.CrossRefGoogle Scholar
  26. OGILVIE, M., 1980. Microscopic and systematic study Madreporarian types of corals. Phil. Trans. Roy. Soc. London B., 187: 83–345.CrossRefGoogle Scholar
  27. OHLHORST, S.L., 1984. The use of poolyacrylamide gel electrophoresis in coral taxonomua. Paleontographica Americana, 54: 45–48.Google Scholar
  28. RICHART Y MENENDEZ, F., and FRIEDMAN, G.M., 1977. Submarine diagenesis of the axial corralite of Actopora cervicornis. Proc. Third Inter. Coral Reef Sym., Miami, 163–166.Google Scholar
  29. TOWE, KM., and MALONE, P.G., 1970. Precipitation of metastable carbonate phases from sea water Nature, 226: 348–349.Google Scholar
  30. VANDERMEULEN, H.J., DAVIS, N.D. and MUSCATINE, L., 1972. The effects of inhibitors of photoynthesis on zooxanghellae in corals and other invertebrates. Mar. Biol., 16: 185–191Google Scholar
  31. WAINWRIGHT, S.E., 1963. Skeletal organizationin the coral, Pocillopora damicomis. Quar. J. Microsc. Sci., 104: 169–193.Google Scholar
  32. Wainwright, SA., 1964. Studies of the mineral phase of coral skeleton. Exp. Cell Res., 32: 213–230.Google Scholar
  33. WALLACE, C.C., 1978. The coral genus Actopora (Scleractinia: Astrocoeniina: Acroporidae) in the central and southern Great Barrier Reef Province. Mem. Queens]. Mus., 18: 273–319.Google Scholar
  34. WELLS, JA., 1956. Scleratinia. In Moore, R.C., (ed) Treatise on Invertebrate Paleontology: Geol. Soc. Amer. and Univ. Kans., Lawrence. F328444.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Brent R. Constantz
    • 1
  1. 1.Earth Sciences BoardUniversity of CaliforniaSanta CruzUSA

Personalised recommendations