Skip to main content

Abstract

The Sizes Needed for Closest Packing. Because of the fact that close contact between powder particles is necessary for effective sintering, it is important to optimize the way that the particles pack together in the green body. If the particles were spheres, and they were arranged in the “closest packing” that is geometrically possible, they would occupy 74% of the volume, with empty spaces (small “pores”) occupying the rest of the volume. An illustration of just three of these spheres is at the top of Fig. 5.1. The percentage of the volume that is occupied by the solid spheres is listed at the upper left corner of Table 5.1. In real ceramic green bodies, the particles are rarely spherical, although they are often spheres that are somewhat distorted. Also, they are very rarely in the closest packed configuration, although sometimes they can be nearly closest packed, and it is instructive to compare the ideal case to these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Y. Onoda, Advances in Ceramics, 21 (1987) 567.

    Google Scholar 

  2. J. S. Reed, “Introduction to the Principles of Ceramic Processing,” J. Wiley, New York (1988) page 190.

    Google Scholar 

  3. R. M. German, “Particle Packing Characteristics,” Metal Powder Industries Federation, Princeton, NJ (1989).

    Google Scholar 

  4. T. Allen, “Particle Size Measurement,” Chapman & Hall, New York (1990).

    Book  Google Scholar 

  5. D. W. Johnson, Jr., et al., Am. Ceram. Soc. Bul., 51 (1972) 896.

    CAS  Google Scholar 

  6. J. S. Reed, et al., Ceram. Trans., 1B (1988) 733.

    Google Scholar 

  7. F. H. Steiger, ChemTech, (April 1971) 225 [see particularly Fig. 2.].

    Google Scholar 

  8. R. M. German, “Particle Packing Characteristics,” Metal Powder Industries Federation, Princeton, NJ (1989) page 209 [see particularly Fig. 8.19a].

    Google Scholar 

  9. I. A. Aksay, Ceram. Trans., 1B (1988) 663.

    Google Scholar 

  10. G. W. Phelps and M. G. McLaren, page 211 in “Ceramic Processing Before Firing,” G. Y. Onoda and L. L. Hench, eds, J. Wiley, New York (1978).

    Google Scholar 

  11. G. Y. Onoda, Advances in Ceramics, 21 (1987) 567.

    Google Scholar 

  12. J. E. Funk and D. R. Dinger, Am. Ceram. Soc. Bul., 67 (1988) 890.

    CAS  Google Scholar 

  13. P. A. Smith and R. A. Haber, J. Amer. Ceram. Soc., 75 (1992) 290.

    Article  CAS  Google Scholar 

  14. I. A. Aksay, Ceram. Trans., 1B (1988) 663 [see Fig. 8].

    Google Scholar 

  15. J. S. Reed, “Introduction to the Principles of Ceramic Processing,” J. Wiley, New York (1988) 246 [see Fig. 15.20].

    Google Scholar 

  16. J. K. Wright, et al., J. Am. Ceram. Soc., 73 (1990) 2653.

    Article  CAS  Google Scholar 

  17. R. L. Lehman, et al., Am. Ceram. Soc. Bul., 63 (1984) 1039.

    CAS  Google Scholar 

  18. P. A. Smith and R. A. Haber, Ceram. Eng. Sci. Proc., 10 (1989) 1.

    CAS  Google Scholar 

  19. S. Lowell, “Powder Surface Area and Porosity,” Chapman & Hall, N.Y. (1991).

    Google Scholar 

  20. D. J. Shanefield and R. E. Mistier, Am. Ceram. Soc. Bul., 53 (1974) 416 [see Table III].

    CAS  Google Scholar 

  21. More water is desorbed at higher “outgassing” temperatures (done just before the B.E.T. measurement), but some still remains on typical powders such as alumina, even at 200°C; for example, see W. H. Wade, et al., J. Phys. Chem., 64 (1960)1196.

    Article  CAS  Google Scholar 

  22. G. W. Phelps, et al., “Rheology and Rheometry of Clay-Water Slips,” Cyprus Co., Sandersville, GA (1980), page 240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shanefield, D.J. (1995). Particle Characteristics. In: Organic Additives and Ceramic Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6103-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6103-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6105-4

  • Online ISBN: 978-1-4757-6103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics