Skip to main content

Optical Sensors with Metal Ions

  • Chapter

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

Optical sensors are materials that potentially have a wide range of uses and applications in both medical and environmental situations among others. Optical sensors can be designed to make use of changes in the wavelengths or extinction coefficients of the sensing material. Alternately for emissive materials, it is possible to use changes in the emission wavelengths or intensities to monitor the presence or absence of chemical species. These chemical species can be cations, anions, or organic molecules. For a sensor to be useful it is necessary for the device to be selective for the specific chemical species of interest, and that the change in the property of the sensing material be responsive in a consistent manner to changes in concentration of the chemical species being detected or analyzed.1–8 This chapter is focused on optical sensors incorporating metals, and one feature of such sensors is their use to detect metal ions in solutions. For the metal binding site in such a sensor it is usual to employ chelate or macrocyclic ligands because they can be tailored to selectively complex a variety of different metal ions. For the detection of uncharged molecules a host will usually be selected such that its cavity matches the shape and size of the chosen guest. More recently metal-containing optical sensors are being developed that can function as anion selective receptors, and again the receptor must be specifically designed to meet the requirements of the individual anions.9

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. W. Czarnik, ed., Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Sympos. Ser., No. 538, (1993).

    Google Scholar 

  2. D. Schuetzle, R. Hammerle, and J. W. Butler, eds., Fundamentals and Applications of Chemical Sensors, ACS Sympos. Ser., No. 309 (1986).

    Google Scholar 

  3. T. E. Edmonds, Chemical Sensors, Chapman and Hall, New York (1988).

    Google Scholar 

  4. R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, and K. R. A. S. Sandanayake, Chem. Soc. Rev. 21, 187 (1992).

    Article  Google Scholar 

  5. A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem. Commun. 1709 (1986).

    Google Scholar 

  6. L. Fabbrizzi, and A. Poggi, Chem. Soc. Rev. 24, 197 (1995).

    Article  Google Scholar 

  7. J. Janata and A. Bezegh, Anal. Chem. 60, 62R (1988).

    Article  Google Scholar 

  8. J Janata, Anal. Chem. 62, 33R (1990).

    Article  Google Scholar 

  9. B. Dietrich, Pure Appl. Chem. 65, 1457 (1993).

    Article  Google Scholar 

  10. R. Narayanaswamy, Anal. Proc. 22, 294 (1985).

    Article  Google Scholar 

  11. A. W. Czamik, Acc. Chem. Res. 27, 302 (1994).

    Article  Google Scholar 

  12. D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York (1994).

    Google Scholar 

  13. H. Hennig and D. Rehorek, Photochemische and Photokatalytische Reaktionen von Koordinationsverbindungen, Akademie-Verlag, Berlin (1987).

    Google Scholar 

  14. Q. Zhou and T. M. Swager, J. Am. Chem. Soc. 117, 7017 (1995).

    Article  Google Scholar 

  15. W. R. Seitz and D. M. Hercules, Anal. Chem. 44, 2143 (1972).

    Article  Google Scholar 

  16. C. A. Chang and H. H. Patterson, Anal. Chem. 52, 653 (1980).

    Article  Google Scholar 

  17. R. Escobar, Q. Lin, A. Guiraum, E E. de la Rosa, Analyst 118, 643 (1993).

    Article  ADS  Google Scholar 

  18. E. Goppelsröder, J. Prakt. Chem. 101, 408 (1867).

    Article  Google Scholar 

  19. M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans. 325 (1979).

    Google Scholar 

  20. M. Huston, K. Haider, and A. W Czamik, J. Am. Chem. Soc. 110, 4460 (1988).

    Article  Google Scholar 

  21. S. Y. Hong and A. W. Czamik, J. Am. Chem. Soc. 115, 3330 (1993).

    Article  Google Scholar 

  22. B. Valeur, J. Bourson, J. Pouget, M. Kaschke, and N. P. Ernsting, J. Phys. Chem. 96, 6545 (1992).

    Article  Google Scholar 

  23. B. Valeur, J. Mugnier, J. Pouget, J. Bourson, and E Santi, J. Phys. Chem. 93, 6073 (1989).

    Article  Google Scholar 

  24. M.-Y. Chae and A. W. Czamik, J. Fluorescence 2, 225 (1992).

    Article  Google Scholar 

  25. V. Goulle, A. Harriman and J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1034 (1993).

    Google Scholar 

  26. E. Amouyal, A. Hamsi, J.-C. Chambron, and J.-P. Sauvage, J. Chem. Soc., Dalton Trans. 1841 (1990).

    Google Scholar 

  27. Y. Jenkins, A. E. Friedman, N. J. Turro and J. K. Barton, Biochemistry 31, 10809 (1992).

    Article  Google Scholar 

  28. J. Fees, W. Kaim, M. Moscherosch, W Mathis, J. Klimia, M. Krejcik, and S. Zâlis„ Inorg. Chem. 32, 166 (1993).

    Article  Google Scholar 

  29. E. Sabatani, H. D. Nikol, H. B. Gray, and E C. Anson, J. Am. Chem. Soc. 118, 1158 (1996).

    Article  Google Scholar 

  30. C. D. Gutsche, Calixarnes, Royal Society of Chemistry, Cambridge, UK (1989).

    Google Scholar 

  31. Pérez-Jiménez, S. J. Harris, and D. Diamond, J. Chem. Soc., Chem. Commun. 480 (1993).

    Google Scholar 

  32. T. Jin, K. Ichikawa, and T. Koyama, J. Chem. Soc., Chem. Commun. 499 (1992).

    Google Scholar 

  33. I. Aoki, T. Sakaki, and S. Shinkai, J. Chem. Soc., Chem. Commun. 730 (1992).

    Google Scholar 

  34. Y. Kubo, S.-I. Hamaguchi, A. Niimi, K. Yoshida, and S. Tokita, J. Chem. Soc., Chem. Commun. 305 (1993).

    Google Scholar 

  35. P. D. Beer, P. A. Gale, D. Hesek, M. Shade, and E Szemes, Abstr. 3rd Int. Calixarene Conf., Abstr. LI-8, Fort Worth, TX (May 1995).

    Google Scholar 

  36. P D. Beer, Z. Chen, A. J. Goulden, A. Grieve, D. Hesek, E Szemes, and J. Wear, J Chem. Soc., Chem. Commun. 1269 (1994).

    Google Scholar 

  37. D. M. Roundhill, Progr. Inorg. Chem. 43, 533 (1995).

    Article  Google Scholar 

  38. J.-C. G. Bünzli, P. Froidevaux, and J. M. Harrowfield, Inorg. Chem. 32, 3306 (1993).

    Article  Google Scholar 

  39. P. Froidevaux and J.-C. G. Bünzli, J. Phys. Chem. 98, 532 (1994).

    Article  Google Scholar 

  40. J.-C. G. Bünzli, P. Froidevaux, and C. Piguet, New J. Chem. 19, 661 (1995).

    Google Scholar 

  41. N. Sabbatini, M. Guardigli, A. Mecati, V. Balzani, R. Ungarn, E. Ghidini, A. Casnati, and A. Poshini, J. Chem. Soc., Chem. Commun. 878 (1990).

    Google Scholar 

  42. M. E Hazenkamp, G. Blassse, N. Sabbatini, and R. Ungaro, Inorg. Chim. Acta 172, 93 (1990).

    Article  Google Scholar 

  43. E. M. Georgiev, J. Clymire, G. L. McPherson, and D. M. Roundhill, Inorg. Chim. Acta 227, 93 (1994).

    Article  Google Scholar 

  44. N. Sato and S. Shinkai, Workshop on Calixarenes and Related Compounds, Abstr. PS/B-I3, Fukuoka, Japan (1993).

    Google Scholar 

  45. D. H. Busch, Chem. Rev. 93, 847 (1993).

    Article  Google Scholar 

  46. M.-Y. Chae, X. M. Cherian, and A. W. Czarnik, J. Org . Chem. 58, 5797 (1993).

    Article  Google Scholar 

  47. G. de Santis, L. Fabbrizzi, M. Licchelli, C. Mangano, and D. Sacchi, Inorg. Chem. 34, 3581 (1995).

    Article  Google Scholar 

  48. E. U. Akkaya, M. E. Huston, and A. W Czarnik, J. Am. Chem. Soc. 112, 3590 (1990).

    Article  Google Scholar 

  49. M. E. Huston, C. Engleman, and A. W. Czarnik, J Am. Chem. Soc. 112, 7054 (1990).

    Article  Google Scholar 

  50. M. Gubelmann, A. Harriman, J.-M. Lehn, and J. L. Sessler, J. Chem. Soc., Chem. Commun. 77 (1988).

    Google Scholar 

  51. L. R. Sousa and J. M. Larson, J. Am. Chem. Soc. 99, 307 (1977).

    Article  Google Scholar 

  52. J. M. Larson and L. R. Sousa, J. Am. Chem. Soc. 100, 1943 (1978).

    Article  Google Scholar 

  53. L. R. Sousa and B. Son, T. E. T.ehearne, R. W Stevenson, S. J. Ganion, B. E. Beeson, S. Barnell, T. E. Mabry, M. Yao, C. Chakrabarty, P. L. Bock, C. C. Yoder, and S. Pope, ACS Sympos. Ser. 538, 10 (1993).

    Google Scholar 

  54. A. P. de Silva and K. R. A. S. Sandanayake, Angew Chem.., Int. Ed. Engl. 29, 1173 (1990).

    Article  Google Scholar 

  55. H. Bouas-Laurent, A. Castellan, M. Daney, J.-P. Desvergne, G. Guinand, P. Marsau, and M.-H. Riffaud, J. Am. Chem. Soc. 108, 315 (1986).

    Article  Google Scholar 

  56. F. Fages, J.-P. Desvergne, H. Bouas-Laurent, J.-M. Lehn, J. P. Konopelski, P. Marsau, and Y. Barrans,J.. Chem. Soc., Chem. Commun. 655 (1990).

    Google Scholar 

  57. A. P. de Silva, H. Q. N. Gunaratne, K. R. A. S. Sandanayake, Tretahedron Lett. 31, 5193 (1990).

    Article  Google Scholar 

  58. S. Ghosh, M. Petrin, A. H. Maki, and L. A. Sousa, J. Chem. Phys. 87, 4315 (1987).

    Article  ADS  Google Scholar 

  59. R. Y. Tsien, Annu. Rev. Biophys. Bioeng. 12, 94 (1983).

    Google Scholar 

  60. A. Minta and R. Y. Tsien, I Biot. Chem. 264, 19449 (1989).

    Google Scholar 

  61. D. Masilamani and M. E. Lucas, ACS Sympos. Ser. 538, 162 (1993).

    Article  Google Scholar 

  62. R. Y. Tsien, Biochemistry 19, 2396 (1980).

    Article  Google Scholar 

  63. C. R. Schauer and O. P. Anderson, J. Am. Chem. Soc. 109, 3646 (1987).

    Article  Google Scholar 

  64. C. K. Schauer and O. P. Anderson, Inorg. Chem. 27, 3118 (1988).

    Article  Google Scholar 

  65. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, I Biot. Chem. 260, 3440 (1985).

    Google Scholar 

  66. D. M. O’Malley, S. M. Lu, W. Guido, and P. R. Adams, Neuroscience 18, 14 (1992).

    Google Scholar 

  67. S. Gilroy and R. L. Jones, Proc. Natl. Acad. Sci. U.S.A. 89, 3591 (1992).

    Article  ADS  Google Scholar 

  68. G. W. Walklup and B. Imperali, J. Am. Chem. Soc. 118, 3053 (1996).

    Article  Google Scholar 

  69. H. A. Godwin and J. M. Berg, J. Am. Chem. Soc. 118, 6514 (1996).

    Article  Google Scholar 

  70. J. M. Berg, Acc. Chem. Res. 28, 14 (1995).

    Article  Google Scholar 

  71. B. A. Krizek, D. L. Merkte, and J. M. Berg, Inorg. Chem. 32, 937 (1993).

    Article  Google Scholar 

  72. P. S. Eis, and J. R. Lakowiez, Biochemistry 32, 7981 (1993).

    Article  Google Scholar 

  73. R. B. Thompson and E. R. Jones, Anal. Chem. 65, 730 (1993).

    Article  Google Scholar 

  74. R. B. Thompson and M. W. Patchan, Anal. Biochem. 227, 123 (1995).

    Article  Google Scholar 

  75. N. J. Wilmott, J. N. Miller, and J. E Tyson, Analyst 109, 343 (1984).

    Article  ADS  Google Scholar 

  76. J. -C. Bünzli and J.-M. Pfefferlé, Helv. Chim. Acta 77, 323 (1994).

    Article  Google Scholar 

  77. A. W. Vames, R. B. Dodson, and W. L. Wehry, J. Am. Chem. Soc. 94, 946 (1972).

    Article  Google Scholar 

  78. G. Weber, J. Biochem. 47, 144 (1950).

    Google Scholar 

  79. M. Cais, S. Dani, Y. Eden, O. Gandolfi, M. Horn, E. E. Isaacs, Y. Josephy, Y. Saar, E. Slovin, and L. Snarsky, Nature 270, 534 (1977).

    Article  ADS  Google Scholar 

  80. J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).

    Article  ADS  Google Scholar 

  81. W. R. Seitz, Anal. Chem. 56, 16A (1984).

    Google Scholar 

  82. R. W. Wagner and J. S. Lindsey, J. Am. Chem. Soc. 116, 9759 (1994).

    Article  Google Scholar 

  83. S. M. Barrard and D. R. Walt, Science 251, 927 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roundhill, D.M. (1999). Optical Sensors with Metal Ions. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics