Nonlinear Optical Properties of Inorganic Clusters

Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Living in an electronic age, one is inclined to take for granted the convenience provided by electronic devices and rarely has time to stop and think about the limitations of the electronics. It has not yet been widely recognized that the role of electrons in the information technology of the 20th century may be replaced by photons in the 21st century.

Keywords

Nonlinear Optical Property Refractive Index Change Optical Limit Anionic Cluster Incident Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Syms and J. Cozens, Optical Guided Waves and Devices, McGraw-Hill, London (1993); J. M. Senior, Optical Fiber Communications: Principles and Practices, 2nd edn., Prentice-Hall, New York (1992); G. I. Stegeman and R. H. Stolen, J. Opt. Soc. Am. B 6, 652 (1989);Parallel Processing’, Proceedings International Parallel Processing Symposium, IEEE Computer Society, Los Alamos (1993); G. P. Agrawal, Fiber-optic Communication Systems, Wiley, New York (1993).Google Scholar
  2. 2.
    D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic Press, New York (1987).Google Scholar
  3. 3.
    A. Billings, Optics, Optoelectronics and Photonics: Engineering Principles and Applications, Prentice Hall, New York (1993).Google Scholar
  4. 4.
    P. N. Prasad and D. Williams, Introduction to Nonlinear Optical Effects in Molecules and Applications, Wiley, New York (1991).Google Scholar
  5. 5.
    D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando (1987); S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., Materials for Nonlinear Optics, Chemical Perspectives, American Chemical Society, Washington, D.C. (1991).Google Scholar
  6. 6.
    See, for example, H. Huang, ed., Optical Nonlinearities and Instabilities in Semiconductors, Academic Press, Boston (1988) J. L. Bredas, C. Adant, P. Tackx, and A. Persoons, Chem. Rev. 94, 243 (1994)H. Nakanishi, Nonlinear Optics 1, 223 (1991) M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).Google Scholar
  7. 7.
    J. S. Meth, H. Vanherzeele, and Y. Wang, Chem. Phys. Lett. 197, 26 (1992) K. Harigaya and S. Abe, Jpn. J. Appl. Phys. 31, L887 (1992) T. W. Ebbesen, K. Tanigaki, and T. Kuroshima, Chem. Phys. Lett. 181, 501 (1991) T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).CrossRefGoogle Scholar
  8. See, for example, R. A. Hann and D. Bloor, eds., Organic Materials for Nonlinear Optics, The Royal Society of Chemistry, London (1989) M. F. Kajzar, P. Prasad, and D. Ulrich, eds., Nonlinear Optical Effects in Organic Polymers, NATO ASI Series E, 162, Kluwer, Dordrecht (1989).Google Scholar
  9. 9.
    T. E Boggess, G. R. Allan, S. J. Rychnovsky, D. R. Labergerie, C. H. Venzke, A. L. Smirl, L. W. Tutt, A. R. Kost, S. W. McCahon, and M. B. Klein, Opt. Eng. 32, 1063 (1993); D. M. Murphy, D. M. P. Mingos, and J. M. Forward, J. Mater. Chem. 3, 67 (1993)L. W. Tutt and S. W. McCahon, Opt. Lett. 15, 700 (1990) G. R. Allan, D. R. Labergerie, S. J. Rychnovsky, T. F. Boggess, and A. L. Smirl, J. Phys. Chem. 96, 6313 (1992).ADSGoogle Scholar
  10. 10.
    M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991) G. F. Neumark, R. M. Park, and J. M. DePuydt, Phys. Today 47 (6), 26 (1994).CrossRefGoogle Scholar
  11. 11.
    G. I. Stegeman and W. Torruellas, Mater. Res. Soc. Symp. Proc. 328, 397 (1994).CrossRefGoogle Scholar
  12. 12.
    S. Shi, H. W. Hou, and X. Q. Xin, J. Phys. Chem. 99, 4050 (1995).CrossRefGoogle Scholar
  13. 13.
    R. Cao, S. J. Lei, M. C. Hing, Z. Y. Huang, and H. Q. Lin, Chin. J. Struct. Chem. 11, 34 (1992).Google Scholar
  14. 14.
    H. W. Hou, X. Q. Xin, X. X. Huang, J. H. Cai, and B. S. Kong, Chin. Chem. Lett. 6, 91 (1995).Google Scholar
  15. 15.
    A. Müller, V. Schimanski, and J. Schimanski, Inorg. Chim. Acta 76, L245 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van St yland, IEEE J. Quantum Electron. 26, 760 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    In fact, the temperature coefficient of the refractive index, do/dT, is known to be negative for most of the common organic solvents. For example, see J. A. Riddick, W. B. Bunger, and T. K. Sanako, Organic Solvents: Physical Properties and Method of Purification, 4th edn., Wiley, New York (1986).Google Scholar
  18. 18.
    S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang, and X. Q. Xin, Mater. Chem. Phys. 39, 298 (1995).CrossRefGoogle Scholar
  19. 19.
    H. W. Hou, X. R. Ye, J. Liu, M. Q. Chen, and S. Shi, Chem. Mater. 7, 472 (1995) H. W. Hou, Thesis, Nanjing Univ., China (1995).Google Scholar
  20. 20.
    E Ge, S. H. Tang, W. Ji, S. Shi, H. W. Hou, D. L. Long, X. Q. Xin, S. F. Lu, and Q. J. Wu, J. Phys. Chem. 101, 27 (1997).Google Scholar
  21. 21.
    H. W. Hou, D. L. Long, X. Q. Xin, X. X. Huang, B. S. Kang, P. Ge, W. Ji, and S. Shi, Inorg. Chem. 35, 5363 (1996).CrossRefGoogle Scholar
  22. 22.
    H. W. Hou, X. Q. Xin, J. Liu, M. Q. Chen, and S. Shi, J. Chem. Soc., Dalton Trans. 3211 (1994).Google Scholar
  23. 23.
    N. Finlayson, W. C. Banyai, C. T. Seaton, G. I. Stegeman, M. O’Neill, T. J. Cullen, and C. N. Ironside, J. Opt. Soc. Am. B 6, 675 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    W. Ji, P. Ge, W. Xie, S. H. Tang, and S. Shi, J. Lumin. 66 and 67, 115 (1996).Google Scholar
  25. 25.
    W. Xie, Thesis, National University of Singapore (1996).Google Scholar
  26. 26.
    E Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, Chem. Phys. Lett. 199, 144 (1992) D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, Opt. Lett. 18, 858 (1993).Google Scholar
  27. 27.
    T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992) L. W. Tutt, and S. W. McCahon, Opt. Lett. 15, 700 (1990) G. R. Allan, D. R. Labergerie, S. J. Rychnovsky, T. E Boggess, A. L. Smirl, and L. Tutt, J. Phys. Chem. 96, 6313 (1992) T. E Boggess, G. R. Allan, S J. Rychnovsky, D. R. Labergerie, C. H. Venzke, A. L. Smirl, L. W. Tutt, A. R. Kost, S. W. Mcahon, and M. B. Klein, Opt. Eng. 32, 1063 (1993) A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias, Opt. Lett. 18, 334 (1993).CrossRefGoogle Scholar
  28. 28.
    S. Shi, Z. Y. Lin, Y. Mo, and X. Q. Xin, J. Phys. Chem. 100, 10696 (1996).CrossRefGoogle Scholar
  29. 29.
    S. Shi, unpublished results.Google Scholar
  30. 30.
    A. Yariv, Quantum Electronics, p. 153, Wiley, New York (1975).Google Scholar
  31. 31.
    F. Kajzar and J. Messier, J. Opt. Soc. Am. B 4, 1040 (1987); E Kajzar and J. Messier, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds., Vol. 2, p. 51, Academic Press, New York (1987).Google Scholar
  32. 32.
    One exception is (n-Bu4N)3[MoOS3Cu3BrI3], see P. E. Hoggard, H. W. Hou, X. Q. Xin, and S. Shi, Mater. Chem. 12 225 (1996).Google Scholar
  33. 33.
    S. Shi, W. Ji, J. P. Lang, and X. Q. Xin, J. Phys. Chem. 98, 3570 (1994).CrossRefGoogle Scholar
  34. 34.
    S. Shi, W. Ji, S. H. Tang, J. P. Lang, and X. Q. Xin, J Am. Chem. Soc. 116, 3615 (1994).CrossRefGoogle Scholar
  35. 35.
    For example, S. Harris, Polyhedron 8, 2843 (1989) I. Dance, Polyhedron 5, 1037 (1986) T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, and J. E Weiher, Proc. Natl. Acad. Sci. U.S.A. 69, 2437 (1972).CrossRefGoogle Scholar
  36. 36.
    J. P. Lang, S. A. Bao, H. Z. Zhu, and X. Q. Xin, Chin. J. Chem. 11, 126 (1993).CrossRefGoogle Scholar
  37. 37.
    H. W. Hou, X. Q. Xin, and S. Shi, J. Inorg. Chem. 12, 225 (1996).Google Scholar
  38. 38.
    R. C. C. Leite, S. P. S. Porto, and T. C. Damen, Appl. Phys. Lett. 10, 100 (1967) 731 (1983) E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, J. Opt. Soc. Am. B 5, 1980 (1988).CrossRefGoogle Scholar
  39. 39.
    C. R. Giuliano and L. D. Hess, IEEE J Quantum Electron. 3, 358 (1967).ADSCrossRefGoogle Scholar
  40. 40.
    D. J. Hagan, T. Xia, A. A. Said, T. H. Wei, and E. W. Van Stryland, Int. J. Nonlinear Opt. Phys. 2, 483 (1993) J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, Opt. Lett. 19, 624 (1994).CrossRefGoogle Scholar
  41. 41.
    W. Ji, H. J. Du, S. H. Tang, and S. Shi, J. Opt. Soc. Am. B 12, 876 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    Defined as the incident fluence needed to reduce the real transmittance through the NLO material to one-half of the hypothetical transmittance calculated by Beer’s law.Google Scholar
  43. 43.
    W. Ji, H. J. Du, S. H. Tang, S. Shi, J. P. Lang, and X. Q. Xin, Singapore J Phys. 11, 55 (1995); H. J. Du, Thesis, National University of Singapore (1995).Google Scholar
  44. 44.
    R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 75th edn., CRC Press, London (1994).Google Scholar
  45. 45.
    G. Sakane, T. Shibahare, H. W. Hou, X. Q. Xin, and S. Shi, Inorg. Chem. 34, 4785 (1995).CrossRefGoogle Scholar
  46. 46.
    W. Ji, S. Shi, H. J. Du, P. Ge, S. H. Tang, and X. Q. Xin, J. Phys. Chem. 99, 17297 (1995); A. Müller, H. Bögge, E. Königer-Ahlbom, and W. Hellmann, Inorg. Chem. 18, 2301 (1979).CrossRefGoogle Scholar
  47. 47.
    T. Mashiko and Dolphin, in Comprehensive Coordination Chemistry, G. Wilkinson ed., p. 813, Pergamon Press, Oxford (1987).Google Scholar
  48. 48.
    T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).ADSCrossRefGoogle Scholar
  49. 49.
    S. Shi, Z. R. Chen, H. W. Hou, X. Q. Xin, and K. B. Yu, Chem. Mater. 7, 1519 (1995).CrossRefGoogle Scholar
  50. 50.
    Z. R. Chen, H. W. Hou, X. Q. Xin, K. B. Yu, and S. Shi, J. Phys. Chem. 99, 8717 (1995).CrossRefGoogle Scholar
  51. 51.
    H. W. Hou, B. Liang, X. Q. Xin, K. B. Yu, P. Ge, W. Ji, and S. Shi, J. Chem. Soc. Faraday Trans. 92, 2343 (1996).CrossRefGoogle Scholar
  52. 52.
    See, for example, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge, New York (1990).Google Scholar
  53. 53.
    H. W. Hou, X. Q. Xin, and S. Shi, Coord. Chem. Rev. 153, 25 (1996).CrossRefGoogle Scholar
  54. 54.
    J. M. Manoli, C. Potvin, E Secheresse, and S. Marzak, Inorg. Chim. Acta. 150, 257 (1988); E. Secheresse, S. Bernes, E. Robert, and Y. Jeannin, J. Chem. Soc., Dalton Trans. 2875 (1991).Google Scholar
  55. 55.
    E Ge, S. H. Tang, W. Ji, S. Shi, H. W. Hou, D. L. Long, X. Q. Xin, S. F. Lu, and Q. J. Wu, J. Phys. Chem. 101, 27 (1997).Google Scholar
  56. 56.
    S. Shi, W. Ji, and X. Q. Xin, J. Phys. Chem. 99, 894 (1995).CrossRefGoogle Scholar
  57. 57.
    W. Ji, W. Xie, S. H. Tang, and S. Shi, Mater. Chem. Phys. 43, 45 (1996).CrossRefGoogle Scholar
  58. 58.
    S. Shi, X. Zhang, and X. E Shi, J. Phys. Chem. 99, 14911 (1995).CrossRefGoogle Scholar
  59. 59.
    D. M. Murphy, D. M. P. Mingos, and J. M. Forward, J. Mater. Chem. 3, 67 (1993).CrossRefGoogle Scholar
  60. 60.
    N. J. Long, Angew. Chem., Int. Ed. Engl. 34, 21 (1995).CrossRefGoogle Scholar
  61. 61.
    N. Y. Zhu, S. W. Du, P. C. Zhen, X. T. Wu, and J. X. Lu, J. Coord. Chem. 26, 35 (1992).CrossRefGoogle Scholar
  62. 62.
    A. Müller, H. Bogge, and V. Schimanski, Inorg. Chim. Acta 69, 5 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • S. Shi
    • 1
  1. 1.SS-ALL Technologies Co.Singapore

Personalised recommendations