Metallo-Organic Materials for Optical Telecommunications

  • Stephen V. Kershaw
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Metallo-organic compounds are just one class of “molecular materials” currently attracting intense interest for their potential use in telecommunications devices. Other types of molecular material include wholly organic polymers containing push—pull, electron donor—acceptor combinations in either the main-chain or most often as side-chain substituents1; highly conjugated main-chain polymers,2 e.g., polyacetylenes, polypyrroles, polyphenylenevinylenes, etc.; and more complex macrocyclics such as C60 and related fullerenes.3,4 In each case the principal property of interest is the optical nonlinearity, either x 2 or x 3 , where the susceptibility may have both real and imaginary components.

Keywords

Wavelength Division Multiplex Nonlinear Absorption Excited State Absorption Third Harmonic Generation PMMA Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Lindsay and K. D. Singer, (eds)., Polymers for Second-Order Nonlinear Optics, ACS Symposium Series 601, ACS Washington (1995).Google Scholar
  2. 2.
    See for example: G. J. Ashwell and D. Bloor, (eds)., Organic materials for nonlinear optics III, Roy. Soc. Chem. (1993); D. S. Chemla and J. Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, London (1987); P. N. Prasad and D. Ulrich, eds., Nonlinear Optical and Electro-Active Polymers, Plenum Press, New York (1988).Google Scholar
  3. 3.
    W. J. Blau, H. J. Byrne, D. J. Cardin, T. J. Dennis, J. P. Hare,. H. W. Kroto, R. Taylor, and D. R. M. Walton, Phys. Rev. Lett. 67, 1423 ( 1991 ).Google Scholar
  4. 4.
    J. E. Wray, K. C. Liu, C. H. Chen, W. G. Garrett, M. G. Payne, R. Goedert, and D. Templeton, Appl. Phys. Rev. Lett. 64, 2785 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    R. J. Manning, D. A. O. Davies, D. Cotter, and J. K. Lucek, Electron. Lett. 30, 787 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    P. Roussignol, D. Ricard, and C. Flytzanis, Appl. Phys. A 44, 285 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J. B. Bloemer, J. Haus, and P. R. Ashley, J. Opt. Soc. Am. B. 7, 790 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    R. Lytel, A. J. Ticknor, and G. E Lipscomb, Organic Materials for Nonlinear Optics III, G. J. Ashwell and D. Bloor, eds., pp 414–419, Roy. Soc. Chem. (1993).Google Scholar
  9. 9.
    G. I. Stegeman, M. Sheik-Bahae, E. VanStryland, and G. Assanto, Opt. Lett. 18, 13 (1993); W. E. Torruellas, D. Y. Kim, M. Jaeger, G. Krijen, R. Schick, G. I. Stegeman, P. Vidakovic, and J. Zyss in G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics, pp. 509–521, ACS Symposium Series 601, ACS, Washington (1995).Google Scholar
  10. 10.
    R. Schick, UY. Back, D. Y. Kim, M. L. Sundheimer, and G. I. Stegeman, in Proc. 7th Eur. Conf on Int. Opt. (ECIO ‘85), pp 339–341 (1995).Google Scholar
  11. 11.
    L. Torner, C. R. Menyuk, and G. I. Stegeman, Opt. Lett. 19, 1615 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    L. W Tutt and T. F. Boggess, Prog. Quant. Electron. 17, 299 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    M. Sjheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. VanStryland, SPIE 1105, 146 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    S. C. Abrahams, ed., Properties of Lithium Niobate, EMIS Data reviews Series 5, INSPEC, Inst. Elec. Eng., London (1989).Google Scholar
  15. 15.
    M. C. Tatham and G. Sherlock, paper PD1, Proc. Int. Photon. Res., Palm Springs (1993).Google Scholar
  16. 16.
    A. D. Ellis and D. M. Spirit, Electron. Letts. 29, 2115 (1993).CrossRefGoogle Scholar
  17. 17.
    R. J. Manning and D. A. O. Davies, Opt. Letts. 19, 889 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 29, 1870 (1993).CrossRefGoogle Scholar
  19. 19.
    T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, and M. Saruwtari, Electron. Letts. 30, 591 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, Electron. Letts. 31, 573 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    M.-V Bergot, M. C. Farries, M. E. Ferman, L. Li., L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, Opt. Lett. 13, 592 (1988).CrossRefGoogle Scholar
  22. 22.
    W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    N. J. Long, Agnew. Chem., Int. Ed. Engl. 34, 21 (1995).CrossRefGoogle Scholar
  24. 24.
    G. I. Stegeman, Nonlinear Opt. 3, 337 (1992).Google Scholar
  25. 25.
    V. Mizrahi, K. W DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    S. V. Kershaw, J. Mod. Opt. 42, 1361 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    D. M. Patrick and R. J. Manning, Elec. Lett. 30, 151 (1994).CrossRefGoogle Scholar
  28. 28.
    P. A. Miles, SPIE 2143, 251 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    J. Castillo, V. P. Kozich, and A. Marcano O., Opt. Lett. 19, 171 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    D. J. McGraw, A. E. Siegman, G. M. Wallraff, and R. D. Miller, Appl. Phys. Lett. 54, 1713 (1989); S. A. Jenekhe, W C. Chen, S. K. Lo, and S. R. Flom, Appl. Phys. Lett. 57, 126 (1990).CrossRefGoogle Scholar
  31. 31.
    M. Sheik-bahe, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 24, 760 (1990).ADSCrossRefGoogle Scholar
  32. 32.
    Measurement of the third-order hyperpolarizability of platinum poly-ynes: S. Guha, C. C. Frazier, P. L. Porter, K. Kang, and S. E. Finberg, Opt. Lett. 14, 952 (1989).CrossRefGoogle Scholar
  33. 33.
    Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum poly-yne: S. Guha, K. Kang, P. Porter, J. F. Roach, D. E. Remy, F. J. Aranda, and D. V. G. L. N. Rao, Opt. Lett. 17, 264 (1992); Nonlinear devices using organometallic polymers: S. Guha, C. C. Frazier, W P. Chen, P. Porter, K. Kang, and S. E. Finberg, SPIE 1105, 14 (1989).CrossRefGoogle Scholar
  34. 34.
    Four-wave mixing in metal poly-ynes: C. C. Frazier, E. A. Chauchard, M. P. Cockerham, and P. L. Porter, Mat. Res. Soc. Symp. Proc 109, 323 (1988).Google Scholar
  35. 35.
    Nonlinear optical properties of transition metal poly-ynes: C. C. Frazier, S. Guha, P. L. Porter, P. M. Cockerham, and E. A. Chauchard, SPIE 971, 186 (1988).CrossRefGoogle Scholar
  36. 36.
    H. Page, W Blau, A. P. Davey, X. Lou, and D. J. Cardin, Synth. Met. 63, 179 (1994).CrossRefGoogle Scholar
  37. 37.
    W. J. Blau, H. J. Byrne, D. J. Cardin, and A. P. Davey, J. Mater. Chem. 1, 245 (1991).CrossRefGoogle Scholar
  38. 38.
    Nonlinear optical studies of molybdenum metal organics: T. Zhai, C. M. Lawson, G. E. Burgess, M. L. Lewis, D. C. Gale, and G. M. Gray, Opt. Lett. 19, 871 (1994).Google Scholar
  39. 39.
    Nonlinear optical properties of transition metal—phosphine complexes: T. Zhai, C. M. Lawson, D. C. Gale, and G. M. Gray, Opt. Mater. 4, 455 (1995).CrossRefGoogle Scholar
  40. 40.
    Enhancement of third-order nonlinearity of phthalocyanine compounds: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Mat. Res. Soc. Symp. Proc. 175, 89 (1990).Google Scholar
  41. 41.
    Nonlinear optical properties of substituted phthalocyanines: J. S. Shirk, J. R. Lindle, E. J. Bartoli, Z. H. Kafafi, and A. W. Snow, ACS Symposium Series 455, pp. 626–634 (1991).CrossRefGoogle Scholar
  42. 42.
    Enhancements in third-order optical properties of phthalocyanine thin films: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, SPIE 1337, 99 (1990).Google Scholar
  43. 43.
    Phases and third-order optical nonlinearities in tetravelent metallophthalocyanine thin films: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Jap. J. Appl. Phys. 30, L1486 (1991).CrossRefGoogle Scholar
  44. 44.
    Resonant third-order optical response in lead phthalocyanines: S. R. Flom, J. S. Shirk, R. G. S. Pong, J. R. Lindle, E J. Bartoli, M. E. Boyle, and A. W. Snow, in Conf. Proc. IQEC’ 94, p. 95, Opt. Soc. Am., Washington (1994).Google Scholar
  45. 45.
    Third-order nonlinear optical properteis of donor-and acceptor-substituted metallophthalocyanines: H. S. Nalwa and A. Kakuta, Thin Solid Films 254, 218 (1995).CrossRefGoogle Scholar
  46. 46.
    Third-order nonlinear optical properties of processable metallo-naphthalocyanine dyes: H. S. Nalwa, S. Kobayashi, and A. Kakuta, Nonlinear Opt. 6, 169 (1993).Google Scholar
  47. 47.
    Molecular structural view on the large third-order nonlinearity of phthalocyanine derivatives: H. Matsuda, S. Okada, A. Masaki, H. Nakanishi, Y. Suda, K. Shigehara, and A. Yamada, SPIE 1337, 105 (1990).ADSCrossRefGoogle Scholar
  48. 48.
    Reversible phase transition and third-order nonlinearity of phthalocyanine derivatives: Y. Suda, K. Shigehara, A. Yamada, H. Matsuda, S. Okada, A. Masaki, and H. Nakanishi, SPIE 1560, 75 (1991).CrossRefGoogle Scholar
  49. 49.
    Electroabsorption of metallophthalocyanines: T. Wada, S. Yanagi, H. Kobayashi, J. Kumar, K. Sasaki, and H. Sasabe, SPIE 2143, 172 (1994).Google Scholar
  50. 50.
    Electroabsorption spectra and nonlinear optical susceptibility of tetrakis t-butyl phthalocyanine: S. Yanagi, T. Wada, J. Kumar, H. Sasabe, and K. Sasaki, Mol. Cryst. Liq. Cryst. 255, 182 (1994).Google Scholar
  51. 51.
    Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines: T. H. Wei, D. J. Hagan, M. J. Spence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).Google Scholar
  52. 52.
    Measurement of the third-order susceptibility of quasi-two-dimensional conjugated discs: Silicon naphthalocyanine: W. Q. Wang, Y. M. Cai, J. R. Heflin, and A. E Garito, Mol. Cryst. Liq. Cryst. 189, 39 (1990).Google Scholar
  53. 53.
    Side-chain copolymers for third-order nonlinear optical applications: J. R. Sounik, R. A. Norwood, J. Popolo, and D. Holcomb, Polym. Prep., Am. Chem. Soc., Div. Polym. Chem. 32, 158 (1991).Google Scholar
  54. 54.
    Excited state absorption and dynamics in a Pb-Phthalocyanine copolymer: S. R. Flom, J. S. Shirk, R. G. S. Pong, J. R. Lindle, and E J. Bartoli, SPIE 2143, 229 (1994).Google Scholar
  55. 55.
    Third-order nonlinear optical interactions of some benzoporphyrins: D. V. G. L. N. Rao, E. J. Aranda„ J. E Roach, and D. E. Remy, Appl. Phys. Lett. 58, 1241 (1991).Google Scholar
  56. 56.
    Third-order optical nonlinearities in organic macrocycles: M. Hosoda, T. Wada, and H. Sasabe, Nonlinear Opt. 7, 199 (1994).Google Scholar
  57. 57.
    Third-order optical nonlinearities of new two-dimensional rz-conjugated metal-coordinated complexes: Q. Gong, Y. Wang, S.-C. Yang, Z. Xia, Y. H. Zou, W. Wun, S. Dong, and D. Wang, J. Phys. D: Appl. Phys. 27, 911 (1994).CrossRefGoogle Scholar
  58. 58.
    Cubic nonlinear optical properties of group 4 metallocene halide and acetylide complexes: L. K. Myers, C. Langhoff, and M. E. Thompson, J. Am. Chem. Soc. 114, 7560 (1992).CrossRefGoogle Scholar
  59. 59.
    Third-order near-resonance nonlinearities in dithiolenes and rare-earth metallocenes: C. S. Winter, S. N. Oliver, J. D. Rusch, R. J. Manning, C. Hill, and A. Underhill, in ACS Symposium Series 455, Materials for Nonliner Optics, S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., (1991).Google Scholar
  60. 60.
    Organotransition metal and rare-earth compounds with high resonant enhanced x(3) coefficients: S. N. Oliver, C. S. Winter, J. D. Rusch, A. Underhill, and C. Hill, SPIE 1337 81 (1990).Google Scholar
  61. 61.
    The mixed metal cluster (n-Bu4N)2 [MoCu3OS3(NCS)3]: the first example of a nest-shaped compound with a large third-order polarizability and optical limiting effect: S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang, and X. Q. Xin, Mater. Chem. Phys. 39 298 (1995).Google Scholar
  62. 62.
    Four-wave mixing measurements on metal organics: D. C. Gale, C. M. Lawson, T. Zhai, and G. M. Gray, SPIE 2229, 41 (1994).CrossRefGoogle Scholar
  63. 63.
    See, for example, Newsletter 4, of the EU Human capital and mobility programme: Network for novel third-order NLO molecular materials, May 1996. ( Network coordinator: Prof. A. E. Underhill, University of Wales, Bangor, Wales, U.K.).Google Scholar
  64. 64.
    C. A. S. Hill, A. E. Underhill, A. Charlton, C. S. Winter, S. N. Oliver, and J. D. Rush, SPIE 1775, 43 (1992).ADSCrossRefGoogle Scholar
  65. 65.
    Z. H. Kafafi, J. R. Lindle, S. R. Flom, R. G. S. Pong, C. S. Weisbecker, R. C. Claussen, and F. J. Bartoli, SPIE 1626, 440 (1992).ADSCrossRefGoogle Scholar
  66. 66.
    T. Fukaya, M. Mizuno, and S. Murata, SPIE 1626, 135 (1992).ADSCrossRefGoogle Scholar
  67. 67.
    A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, J. Mater. Chem. 5, 261 (1995).CrossRefGoogle Scholar
  68. 68.
    New x(3) materials for electro-optic and all-optical signal processing based on metal complexes: A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, Nonlinear Opt. 10 115 (1995).Google Scholar
  69. 69.
    Large refractive nonlinearities and two-photon absorption in aryl-substituted dithiolenes: S. V. Kershaw, S. N. Oliver, R. J. Manning, J. D. Rusch, C. A. S. Hill, A. E. Underhill, and A. Charlton, SPIE 2025, 388 (1993).Google Scholar
  70. 70.
    Complex nonlinearity of metal dithiolenes at 1.064 and 1.321 µm: S. V. Kershaw, S. N. Oliver, A. E. Underhill, C. A. H. Hill, and A. Charlton, Opt. Commun. submitted.Google Scholar
  71. 71.
    Third-order nonlinear optical properties of metal dithioloene and phthalocyanine doped sol-gel materials: G. J. Gall, T. A. King, S. N. Oliver, C. A. Capozzi, A. B. Seddon, C. A. S. Hill, and A. E. Underhill, SPIE 2288, 372 (1994).Google Scholar
  72. 72.
    Third-order resonance-enhanced nonlinearities of polymethylmethacrylate polymers containing nickel dithiolene host molecules: A. E. Underhill, C. A. S. Hill, C. S. Winter, S. N. Oliver, and J. D. Rush, Mol. Cryst. Lig. Cryst. 217, 7 (1992).Google Scholar
  73. 73.
    Measurement of the large optical nonlinearity of nickel dithiolene doped polymers: C. S. Winter, R. J. Manning, S. N. Oliver, and C. A. S. Hill, Opt. Commun. 90, 139 (1992).Google Scholar
  74. 74.
    Third-order NLO properties of PMMA films co-dispersed with metal dithiolene oligomers: A. E. Underhill, C. A. S. Hill, A. Charlton, S. Oliver, and S. Kershaw, Synth. Met. 71, 1703 (1995).Google Scholar
  75. 75.
    Nonlinear polarziation coupling and instabilities in single-mode liquid-cored fibers: R. Kashyap and N. Finlayson, Opt. Lett. 17, 405 (1992).CrossRefGoogle Scholar
  76. 76.
    Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides: H. Kanbara, H. Kobayashi, K. Kudobera, T. Kurihara, and T. Kaino, IEEE Photonics Tech. Lett. 3, 795 (1991).CrossRefGoogle Scholar
  77. 77.
    R. J. Manning, R. Kashyap, S. N. Oliver, and D. Cotter, in Proc. International Photonics Research Topical Meeting, Palm Springs, USA (March 1993 ).Google Scholar
  78. 78.
    D. Cotter, private communication.Google Scholar
  79. 79.
    Comparison of calculated and measured impulse responses of optical fibres: K. Okamoto, Appl. Opt. 18, 2199 (1979).CrossRefGoogle Scholar
  80. 80.
    L. Sarger, P. Segonds, L. Canioni, E Adamietz, A. Ducasse, C. Duchesne, E. Fargin, R. Olazuaga, and G. Le Flem, J. Opt. Soc. Am. B. 11, 995 (1994); M. Sheik-bahe, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 24, 760 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Stephen V. Kershaw
    • 1
  1. 1.Martlesham HeathBT LabsSuffolkUK

Personalised recommendations