Advertisement

Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials

  • Gary M. Gray
  • Christopher M. Lawson
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Materials exhibiting third-order nonlinear optical (NLO) properties have applications in a number of important technologies including power limiting for sensor protection and optically addressed optical switches for photonics switching, all optical signal processing and optical computing.1–5 Because of the potential importance of these technologies, there is currently intense research interest in developing new third-order NLO materials with large effective third-order NLO susceptibilities, χ(3), and the appropriate properties for the various applications.

Keywords

Transition Metal Complex Linear Absorption Nonlinear Absorption Excited State Absorption Linear Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series, Vol. 233, American Chemical Society, Washington (1983).Google Scholar
  2. 2.
    D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic Press, New York (1987).Google Scholar
  3. 3.
    S. B. Marder, J. E. Sohn, and G. S. Stuckey, eds., Materials for Nonlinear Optics, Chemical Perspectives, ACS Symposium Series, Vol. 455, American Chemical Society, Washington (1991).Google Scholar
  4. 4.
    P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York (1991).Google Scholar
  5. 5.
    J. Messier, F. Kajar, and P. N. Prasad, eds., Organic Molecules for Nonlinear Optics and Photonics, Kluwer Scientific Publishers, Dordrecht (1991).Google Scholar
  6. 6.
    N. J. Long, Angew Chem., Int. Ed. Engl., 34, 21 (1995).CrossRefGoogle Scholar
  7. 7.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett., 55, 1287 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, Z. H. Kafafi, and A. W. Snow, ACS Symposium Series, 455, 626 (1991).CrossRefGoogle Scholar
  9. 9.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, and M. E. Boyle, J. Phys. Chem., 96, 5847 (1992).CrossRefGoogle Scholar
  10. 10.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, Z. H. Kafafi, A. W. Snow, and M. E. Boyle, Int. J. Nonlinear Opt. Phys., 1, 699 (1992).CrossRefGoogle Scholar
  11. 11.
    E J. Bartoli, J. R. Lindle, J. S. Shirk, S. R. Flom, A. W. Snow, and M. E. Boyle, Nonlinear Opt., 10, 161 (1995).Google Scholar
  12. 12.
    M. A. Diaz-Garcia, I. Ledoux, J. A. Duro, T. Torres, E Aguillô-Lopez, and J. Zyss, J. Phys. Chem., 98, 8761 (1994).CrossRefGoogle Scholar
  13. 13.
    T. Sakaguchi, Y. Shimizu, M. Miya, T. Fukumi, K. Ohta, and A. Nagata, Chem. Lett., 281 (1992).Google Scholar
  14. 14.
    Q. Gong, Y. Wang, S.-C. Yang, Z. Xia, Y. H. Zou, W. Sun, S. Dong, and D. Wang, J. Phys. D: Appl. Phys., 27, 911 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Diaz-Garcia, I. Ledoux, E Fernâdez-Lâzaro, A. Sastre, T. Torres, E Aguillô-Lopez, and J. Zyss, J. Phys. Chem., 98, 4495 (1994).CrossRefGoogle Scholar
  16. 16.
    E Fernâdez-Lâzaro, A. Sastre, and T. Torres,.1 Chem. Soc., Chem. Commun., 419 (1995).Google Scholar
  17. 17.
    M. A. Díaz-García, I. Ledoux, E Fernádez-Lázaro, A. Sastre, T. Torres, E Aguilló-López, and J. Zyss, Nonlinear Opt., 10, 101 (1995).Google Scholar
  18. 18.
    H. Matsuda, S. Okada, A. Masaki, H. Nakamishi, Y. Suda, K. Shigehara, and A. Yamada, SPIE Proc., 1337, 105 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Mat. Res. Soc. Proc., 175, 89 (1990).CrossRefGoogle Scholar
  20. 20.
    T. Maruno, A. Yamashita, T. Hayashi, Y. Y. Maruo, H. Kanbara, and K. Kubodera, Proc. 1st Conf. Intelligent Mat., 194 (1992).Google Scholar
  21. 21.
    T. Wada, M. Hosoda, and H. Sasabe, Adv. Chem., 240, 303 (1994).CrossRefGoogle Scholar
  22. 22.
    S. N. Oliver, C. S. Winter, J. D. Rush, A. E. Underhill, and C. Hill, SPIE Proc., 1337, 81 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    C. A. S. Hill, A. E. Underhill, C. S. Winter, S. N. Oliver, and J. D. Rush, Spec. Pub1.-R. Soc. Chem. (Org. Mat. Nonlinear Opt. 2), 91, 217 (1991).Google Scholar
  24. 24.
    C. S. Winter, S. N. Oliver, J. D. Rush, C. A. S. Hill, and A. E. Underhill, in Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed., p. 383, Kluwer Academic Publishers, Dordrecht (1991).CrossRefGoogle Scholar
  25. 25.
    C. A. S. Hill, A. E. Underhill, A. Charlton, C. S. Winter, S. N. Oliver, and J. D. Rush, SPIE Proc., 1775, 43 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    S. N. Oliver, C. S. Winter, R. J. Manning, J. D. Rush, C. Hill, and A. E. Underhill, SPIE Proc., 1775, 110 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    S. N. Oliver and C. S. Winter, Adv. Mater., 4, 119 (1992).CrossRefGoogle Scholar
  28. 28.
    S. V. Kershaw, S. N. Oliver, R. J. Manning, J. D. Rush, C. A. S. Hill, A. E. Underhill, and A. S. Charlton, SPIE Proc., 2025, 388 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    G. J. Gall, T. A. King, S. N. Oliver, S. A. Capozzi, A. B. Sneddon, C. A. S. Hill, and A. E. Underhill, SPIE Proc., 2288, 372 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. E. Underhill, C. A. S. Hill, A. Charlton, S. Oliver, and S. Kershaw, Synth. Met., 71, 1703 (1995).CrossRefGoogle Scholar
  31. 31.
    S. N. Oliver, S. V. Kershaw, A. E. Underhill, C. A. S. Hill, and A. Charlton, Nonlinear Opt., 10, 87 (1995).Google Scholar
  32. 32.
    C. A. S. Hill, A. Charlton, A. E. Underhill, K. M. A. Malik, M. B. Hursthouse, A. I. Karaulov, S. N. Oliver, and S. V. Kershaw, J. Chem. Soc., Dalton Trans., 587 (1995).Google Scholar
  33. 33.
    M. A. Diaz-Garcia, E Aguillô-Lôez, M. G. Hutchings, P. E Gordon, and F. Kajzar, SPIE Proc., 2285, 227 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    T. Bjornholm, T. Geisler, J. C. Petersen, D. R. Greve, and N. C. Schiodt, Nonlinear Opt., 10, 129 (1995).Google Scholar
  35. 35.
    Z. H. Kafafi, J. R. Lindle, C. S. Weisbecker, E J. Bartoli, J. S. Shirk, T. H. Yoon, and 0.-J. Kim, Chem. Phys. Lett., 179, 79 (1991).Google Scholar
  36. 36.
    Z. H. Kafafi, J. R. Lindle, S. R. Flom, R. G. S. Pong, C. S. Weisbecker, R. C. Claussen, and E J. Bartoli, SPIE Proc., 1626, 440 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, J. Mater. Chem., 5, 261 (1995).CrossRefGoogle Scholar
  38. 38.
    A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, Nonlinear Opt., 10, 115 (1995).Google Scholar
  39. 39.
    A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, SPIE Proc., 2531, 350 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    T. Kamada, T. Fukaya, M. Mizuno, H. Masuda, and E Mizukami, Chem. Phys. Lett., 21, 194 (1994).ADSCrossRefGoogle Scholar
  41. 41.
    T. Kamada, T. Fukaya, H. Masuda, and E Mizukami, Appl. Phys. Lett., 65, 1343 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    T. Kamada, T. Fukaya, T. Kodzasa, H. Masuda, and E Mizukami, Synth. Met., 71, 1725 (1995).CrossRefGoogle Scholar
  43. 43.
    T. Kamada, T. Fukaya, T. Kodzasa, H. Masuda, and F. Mizukami, Mol. Cryst. Liq. Cryst., 267, 117 (1995).CrossRefGoogle Scholar
  44. 44.
    T. Kamada, T. Fukaya, H. Masuda, F. Mizukami, M. Tachiya, R. Ishikawa, and T. Uchida, J. Phys. Chem., 99, 13239 (1995).CrossRefGoogle Scholar
  45. 45.
    S. Ghosal, M. Samoc, P. N. Prasad, and J. J. Tufariello, J. Phys. Chem., 94, 2847 (1990).CrossRefGoogle Scholar
  46. 46.
    M. E. Thompson, W. Chiang, L. K. Meyers, and C. Langhoff, SPIE Proc., 1497, 423 (1991).ADSCrossRefGoogle Scholar
  47. 47.
    Z. Yuan, G. Stringer, I. R. Jobe, D. Kreller, K. Scott, L. Koch, N. J. Taylor, and T. B. Marder, J. Organomet. Chem., 452, 115 (1993).CrossRefGoogle Scholar
  48. 48.
    T. Kamata, T. Fukaya, T. Kodzasa, H Matsuda, E Mizukami, M. Tachiya, R. Ishikawa, T. Uchida, and Y. Yamazaki, Nonlinear Opt., 13, 31 (1995).Google Scholar
  49. 49.
    J. K. Meyers, C. Langhoff, and M. E. Thompson, J. Am. Chem. Soc., 114, 7560 (1992).CrossRefGoogle Scholar
  50. 50.
    L. K. Meyers, D. M. Ho, M. E. Thompson, and C. Langhoff, Polyhedron, 14, 57 (1995).CrossRefGoogle Scholar
  51. 51.
    C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, and C. H. Lee, Polymer, 28, 553 (1987).CrossRefGoogle Scholar
  52. 52.
    C. C. Frazier, E. A. Chauchard, M. E Cockerham, and P L. Porter, Mat. Res. Soc., Symp. Proc., 109, 323 (1988).CrossRefGoogle Scholar
  53. 53.
    W. J. Blau, H. J. Byrne, D. J. Cardin, and A. P. Davey. J. Mat. Chem., 1, 245 (1991).CrossRefGoogle Scholar
  54. 54.
    A. P. Davey, D. J. Cardin, H. J. Byrne, and W. Blau, W. in Organic Molecules for Nonlinear Optics and Photonics, J. Messier et al., eds., p. 391, Kluwer Academic Publishers, Dordrecht (1991).Google Scholar
  55. 55.
    H. J. Byrne and W. Blau, SPIE Proc., 2362, 34 (1995).ADSCrossRefGoogle Scholar
  56. 56.
    N. M. Agh-Atabay, W. E. Lindsell, P. N. Preston, P J. Tomb, A. D. Lloyd, R. Rangel-Rojo, G. Spruce, and B. S. Wherrett, J. Mat. Chem., 2, 1241 (1992).Google Scholar
  57. 57.
    A. P. Davey, H. J. Byrne, H. Page, W. Blau, and D. J. Cardin, Synth. Metals, 58, 161 (1993).CrossRefGoogle Scholar
  58. 58.
    I. W. Tuft and S. W. McCahon, Opt. Lett., 15, 700 (1990).ADSCrossRefGoogle Scholar
  59. 59.
    S. Shi, H. W. Hou, and X. Q. Zin, J Phys. Chem., 99, 4050 (1995).CrossRefGoogle Scholar
  60. 60.
    G. Sakane, T. Shibahare, H. W. Hou, X. Q. Zin, and S. Shi, Inorg. Chem., 34, 4785 (1995).CrossRefGoogle Scholar
  61. 61.
    W. Ji, S. Shi, H. J. Du, P. Ge, S. H. Tang, and X. Q. Xin, J. Phys. Chem., 99, 17297 (1995).CrossRefGoogle Scholar
  62. 62.
    T. Zhai, C. M. Lawson, G. Burgess, D. C. Gale, and G. M. Gray, Opt. Lett., 19, 831 (1994).ADSCrossRefGoogle Scholar
  63. 63.
    T. Zhai. C. M. Lawson, D. C. Gale, and G. M. Gray, Opt. Mat., 4, 455 (1995).Google Scholar
  64. 64.
    C. M. Lawson, T. Zhai, D. C. Gale, and G. M. Gray, Mat. Res. Soc., Symp. Proc., 374, 287 (1995).CrossRefGoogle Scholar
  65. 65.
    D. C. Gale, G. E. Burgess, T. Zhai, and M. L. Lewis, Rev. Sci. Instrum., 64, 3072 (1993).ADSCrossRefGoogle Scholar
  66. 66.
    T. T. Basiev, S. B. Mirov, and V. V. Osiko, IEEE J Quantum Electron., QE-24, 1052 (1988).Google Scholar
  67. 67.
    Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).Google Scholar
  68. 68.
    M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J Quantum Electron., QE-26, 760 (1990).Google Scholar
  69. 69.
    J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, Chem. Phys., 179, 543 (1994).ADSCrossRefGoogle Scholar
  70. 70.
    R. G. Caro and M. C. Gower, IEEE J. Quantum Electron., QE-18, 1376 (1982).Google Scholar
  71. 71.
    G. L. Wood, M. J. Miller, and A. G. Mott, Opt. Lett., 20, 973 (1995).ADSCrossRefGoogle Scholar
  72. 72.
    D. C. Rodenberg, J. R. Heflin, and A. E Garito, Nature, 359, 309 (1992).ADSCrossRefGoogle Scholar
  73. 73.
    W. K. Zou and N. L. Yang, Opt. Lett., 16, 958 (1991).CrossRefGoogle Scholar
  74. 74.
    E. W. Van Stryland, M. Sheik-bahae, A. A. Said, and D. J. Hagan, SPIE Proc., 1852, 135 (1993).Google Scholar
  75. 75.
    M. D. Fayer, Ann. Rev. Phys. Chem., 33, 63 (1982).ADSCrossRefGoogle Scholar
  76. 76.
    G. E. Burgess, M.S. Thesis, The University of Alabama at Birmingham, Birmingham (1993).Google Scholar
  77. 77.
    G. M. Gray and Y. Zhang, J. Cryst. Spec. Res., 23, 711 (1993).Google Scholar
  78. 78.
    G. P. Agnawal, C. Cojon, and C. Flytzasnis, Phys. Rev, B17, 776 (1978).ADSGoogle Scholar
  79. 79.
    D. C. Gale, Ph.D. Thesis, The University of Alabama at Birmingham, Birmingham (1995).Google Scholar
  80. 80.
    Y. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gary M. Gray
    • 1
  • Christopher M. Lawson
    • 1
  1. 1.Department of ChemistryThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations