Skip to main content

Multidifferential Calculus: Chain Rule, Open Mapping and Transversal Intersection Theorems

  • Chapter

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

The purpose of this note is to develop a calculus of “multidifferentials” of setvalued maps between finite-dimensional real linear spaces. This will be done by generalizing the concept of the classical differential (CD), following the ideas of F. Clarke’s theory of generalized Jacobians (CGJ’s) and J. Warga’s theory of derivate containers (WDC’s), cf. Clarke [4] and Warga [17, 18, 19, 20].

This research was supported in part by NSF Grant DMS95-00798 and AFoSR Grant 0923.

The author is grateful to two anonymous referees for their very helpful remarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkovitz, L.D. (1974), Optimal Control Theory, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  2. Browder, F.E. (1960), “On the fixed point index for continuous mappings of locally connected spaces,” Summa Brazil. Math., Vol. j, 253293.

    Google Scholar 

  3. Clarke, F.H. (1976), “The Maximum Principle under minimal hypotheses,” S.I. A.M. J. Control Optim., Vol. 14, 1078–1091.

    Article  MATH  Google Scholar 

  4. Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Wiley Interscience, New York.

    MATH  Google Scholar 

  5. Graves, L.M. (1950), “Some mapping theorems,” Duke Math. J., Vol. 17, 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaskosz, B. and Lojasiewicz Jr., S. (1985), “A Maximum Principle for generalized control systems,” Nonlinear Anal. TMA, Vol. 9, 109–130.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lojasiewicz Jr., S., “Local controllability of parametrized differential equations,” in preparation.

    Google Scholar 

  8. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mischenko, E.F. (1962), The Mathematical Theory of Optimal Processes, Wiley, New York.

    MATH  Google Scholar 

  9. Rabinowitz, P. (1971), “Some global results for nonlinear eigenvalue problems,” J. Funct. Analysis, Vol. 7, 487–513.

    Article  MathSciNet  MATH  Google Scholar 

  10. Sard, A. (1942), “The measure of critical values of differentiable maps,” Bull. Amer. Math. Soc., Vol. 48, 883–890.

    Article  MathSciNet  MATH  Google Scholar 

  11. Spanier, E. H. (1966), Algebraic Topology, Springer-Verlag, New York.

    MATH  Google Scholar 

  12. Sternberg, S. (1964), Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  13. Sussmann, H.J. (1994), “A strong version of the Lojasiewicz Maximum Principle,” in Optimal Control of Differential Equations, Nicolai H. Pavel, ed., Marcel Dekker, New York.

    Google Scholar 

  14. Sussmann, H.J. (1994), “A strong version of the Maximum Principle under weak hypotheses,” in Proc. 33rd IEEE Conference on Decision and Control, Orlando, Florida, 1950–1956.

    Google Scholar 

  15. Sussmann, H.J. (1997), “Some recent results on the maximum principle of optimal control theory,” in Systems and Control in the Twenty-First

    Google Scholar 

  16. Century,C. I. Byrnes, B. N. Datta, D. S. Gilliam and C. F. Martin, eds., Birkhäuser, Boston, 351–372.

    Google Scholar 

  17. Sussmann, H.J. (1996), “A strong maximum principle for systems of differential inclusions,” in Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, Dec. 1996, IEEE Publications.

    Google Scholar 

  18. Warga, J. (1981), “Fat homeomorphisms and unbounded derivate containers,” J. Math. Anal. Appl., Vol. 81, 545–560.

    Article  MathSciNet  MATH  Google Scholar 

  19. Warga, J. (1983), “Controllability, extremality and abnormality in non-smooth optimal control,” J. Optim. Theory Applic., Vol. 41, 239–260.

    Article  MathSciNet  MATH  Google Scholar 

  20. Warga, J. (1983), “Optimization and controllability without differentiability assumptions,” SIAM J. Control and Optimization, Vol. 21, 837–855.

    Article  MathSciNet  MATH  Google Scholar 

  21. Warga, J. (1988), “Homeomorphisms and local Cl approximations,” Nonlinear Anal. TMA, Vol. 12, 593–597.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wazewski, T. (1947), “Sur l’évaluation du domaine d’existence des fonctions implicites réelles ou complexes,” Ann. Soc. Polon. Math., Vol. 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sussmann, H.J. (1998). Multidifferential Calculus: Chain Rule, Open Mapping and Transversal Intersection Theorems. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics