Advertisement

Multidifferential Calculus: Chain Rule, Open Mapping and Transversal Intersection Theorems

  • Héctor J. Sussmann
Part of the Applied Optimization book series (APOP, volume 15)

Abstract

The purpose of this note is to develop a calculus of “multidifferentials” of setvalued maps between finite-dimensional real linear spaces. This will be done by generalizing the concept of the classical differential (CD), following the ideas of F. Clarke’s theory of generalized Jacobians (CGJ’s) and J. Warga’s theory of derivate containers (WDC’s), cf. Clarke [4] and Warga [17, 18, 19, 20].

Keywords

Compact Subset Open Mapping Convex Cone Closed Convex Cone Pontryagin Maximum Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berkovitz, L.D. (1974), Optimal Control Theory, Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  2. [2]
    Browder, F.E. (1960), “On the fixed point index for continuous mappings of locally connected spaces,” Summa Brazil. Math., Vol. j, 253293.Google Scholar
  3. [3]
    Clarke, F.H. (1976), “The Maximum Principle under minimal hypotheses,” S.I. A.M. J. Control Optim., Vol. 14, 1078–1091.zbMATHCrossRefGoogle Scholar
  4. [4]
    Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Wiley Interscience, New York.zbMATHGoogle Scholar
  5. [5]
    Graves, L.M. (1950), “Some mapping theorems,” Duke Math. J., Vol. 17, 111–114.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Kaskosz, B. and Lojasiewicz Jr., S. (1985), “A Maximum Principle for generalized control systems,” Nonlinear Anal. TMA, Vol. 9, 109–130.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Lojasiewicz Jr., S., “Local controllability of parametrized differential equations,” in preparation.Google Scholar
  8. [8]
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mischenko, E.F. (1962), The Mathematical Theory of Optimal Processes, Wiley, New York.zbMATHGoogle Scholar
  9. [9]
    Rabinowitz, P. (1971), “Some global results for nonlinear eigenvalue problems,” J. Funct. Analysis, Vol. 7, 487–513.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Sard, A. (1942), “The measure of critical values of differentiable maps,” Bull. Amer. Math. Soc., Vol. 48, 883–890.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Spanier, E. H. (1966), Algebraic Topology, Springer-Verlag, New York.zbMATHGoogle Scholar
  12. [12]
    Sternberg, S. (1964), Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  13. [13]
    Sussmann, H.J. (1994), “A strong version of the Lojasiewicz Maximum Principle,” in Optimal Control of Differential Equations, Nicolai H. Pavel, ed., Marcel Dekker, New York.Google Scholar
  14. [14]
    Sussmann, H.J. (1994), “A strong version of the Maximum Principle under weak hypotheses,” in Proc. 33rd IEEE Conference on Decision and Control, Orlando, Florida, 1950–1956.Google Scholar
  15. [15]
    Sussmann, H.J. (1997), “Some recent results on the maximum principle of optimal control theory,” in Systems and Control in the Twenty-First Google Scholar
  16. Century,C. I. Byrnes, B. N. Datta, D. S. Gilliam and C. F. Martin, eds., Birkhäuser, Boston, 351–372.Google Scholar
  17. [16]
    Sussmann, H.J. (1996), “A strong maximum principle for systems of differential inclusions,” in Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, Dec. 1996, IEEE Publications.Google Scholar
  18. [17]
    Warga, J. (1981), “Fat homeomorphisms and unbounded derivate containers,” J. Math. Anal. Appl., Vol. 81, 545–560.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [18]
    Warga, J. (1983), “Controllability, extremality and abnormality in non-smooth optimal control,” J. Optim. Theory Applic., Vol. 41, 239–260.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [19]
    Warga, J. (1983), “Optimization and controllability without differentiability assumptions,” SIAM J. Control and Optimization, Vol. 21, 837–855.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [20]
    Warga, J. (1988), “Homeomorphisms and local Cl approximations,” Nonlinear Anal. TMA, Vol. 12, 593–597.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [21]
    Wazewski, T. (1947), “Sur l’évaluation du domaine d’existence des fonctions implicites réelles ou complexes,” Ann. Soc. Polon. Math., Vol. 20.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Héctor J. Sussmann
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations