Skip to main content

Absolute Stability of Feedback Systems in Hilbert Spaces

  • Chapter
Optimal Control

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

The problem of absolute stability of a feedback loop of an abstract differential system in Hilbert spaces is considered. Applications of Popov’s type frequency domain criteria and of the Kalman-Yakubovich Lemma for the construction of Lyapunov functions are illustrated, in two situations pertaining to distributed systems. Finally, a new criterion for absolute stability of a class of parabolic systems with boundary feedback is presented.

This research was supported by the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica within the program of GNAFA-CNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizerman, M.A. and Gantmacher, F.R. (1964), Absolute Stability of Regulator Systems, Holden Day, San Francisco.

    Google Scholar 

  2. Balakrishnan, A.V. (1995), “On a generalization of the KalmanYakubovich Lemma,” Appl. Math. Optimiz., Vol. 31, 177–187.

    Article  MATH  Google Scholar 

  3. Bensoussan, A., Da Prato, G., Delfour, M.C. and Mitter, S.K. (1992), Representation and Control of Infinite Dimensional Systems, Vol. I, Birkhäuser, Boston.

    MATH  Google Scholar 

  4. Bensoussan, A., Da Prato, G., Delfour, M.C. and Mitter, S.K. (1993), Representation and Control of Infinite Dimensional Systems, Vol. II, Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  5. Bucci, F. (1997), “Frequency domain stability of nonlinear feedback systems with unbounded input operator,” Dynamics of Continous, Discrete and Impulsive Systems, to appear.

    Google Scholar 

  6. Churilov, A.N. (1984), “On the solvability of matrix inequalities,” Mat. Zamietk, Vol. 36, 725–732 (in Russian) (English transl. in Math. Notes, Vol. 36, (1984), 862–866 ).

    MathSciNet  MATH  Google Scholar 

  7. Corduneanu, C. (1973), Integral Equations and Stability of Feedback Systems, Academic Press, New York.

    MATH  Google Scholar 

  8. Halanay, A. (1966), Differential Equations, Academic Press, New York.

    MATH  Google Scholar 

  9. Kalman, R.E. (1963), “Lyapunov functions for the problem of Lur’e in automatic control,” Proc. Nat. Acad. Sci. USA, Vol. 49, 201–205.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lasiecka, I. and Triggiani, R. (1991), “Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory,” in Lecture Notes in Control and Information Sci., Vol. 164, Springer-Verlag, Berlin.

    Google Scholar 

  11. Likhtarnikov, A.L. and Yakubovich, V.A. (1976), “The frequency theorem for equations of evolutionary type,” Siberian Math. J., Vol. 17, 790–803.

    Article  Google Scholar 

  12. Louis, J.C. and Wexler, D. (1991), “The Hilbert space regulator problem and operator Riccati equation under stabilizability,” Ann. Soc. Sci. Bruxelles, Ser. I, Vol. 105, 137–165.

    MathSciNet  MATH  Google Scholar 

  13. Lur’e, A.I. (1951), Some Nonlinear Problems in the Theory of Automatic Control, Gostekhizdat., Moscow-Leningrad (in Russian) (English ed. H.M. Stationery Office, London, 1957 ).

    Google Scholar 

  14. Lur’e, A.I. and Postnikov, V.N. (1944), “On the theory of stability of control systems,” Prikl. Mat. Mech., Vol. 8, 246–248 (in Russian).

    MATH  Google Scholar 

  15. Meyer, K.R. (1966), “On the existence of Lyapunov functions for the problem of Lur’e,” SIAM J. Control, Vol. 3, 373–383.

    Google Scholar 

  16. Narendra, K.S. and Taylor, J.H. (1973), Frequency Domain Criteria for Absolute Stability, Academic Press, New York.

    MATH  Google Scholar 

  17. Pandolfi, L. (1997), “The Kalman-Yakubovich-Popov Theorem: an overview and new results for hyperbolic control systems,” in Nonlinear Analysis, Vol. 30, No. 2, 735–745.

    Google Scholar 

  18. Pandolfi, L. (1997), “Dissipativity and Lur’e Problem for Parabolic Boundary Control Systems,” SIAM J. Control Optim., to appear.

    Google Scholar 

  19. Pazy, A. (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  20. Popov, V.M. (1961), “Absolute stability of nonlinear systems of automatic control,” Automat. i Telemekh., Vol. 22, No. 8, 961–979 (in Russian) (English transi. in Automat. Remote Control, Vol. 22 (1962), 857–875 ).

    MathSciNet  Google Scholar 

  21. Reissig, R., Sansone, G. and Conti, R. (1974), Non-linear Differential Equations of Higher Order, Noordhoff International Publ., Leyden.

    MATH  Google Scholar 

  22. Wexler, D. (1979), “Frequency domain stability for a class of equations arising in reactor dynamics,” SIAM J. Math. Anal., Vol. 10, 118–138.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wexler, D. (1980), “On frequency domain stability for evolution equation in Hilbert spaces via the algebraic Riccati equation,” SIAM J. Math. Anal., Vol. 11, 969–983.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yakubovich, V.A. (1962), “Solution of certain matrix inequalities occurring in the theory of automatic controls,” Dokl. Akad. Nauk USSR, Vol. 143, 1304–1307 (in Russian) (English transl. in Soviet Math. Dokl., Vol.. 4 (1963), 620–623 ).

    Google Scholar 

  25. Yakubovich, V.A. (1973), “A frequency theorem in control theory,” Siberian Math. J., Vol. 14, 265–289.

    Article  MATH  Google Scholar 

  26. Yakubovich, V.A. (1974), “A frequency theorem for the case in whichthe state and control spaces are Hilbert spaces with an application tosome problems of synthesis of optimal controls, I, Siberian Math J.,Vol. 15, 457–476.

    Article  Google Scholar 

  27. Yakubovich, V.A. (1975), “A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an application to some problems of synthesis of optimal controls, II,” Siberian Math J., Vol. 16, 828–845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bucci, F. (1998). Absolute Stability of Feedback Systems in Hilbert Spaces. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics