Pulsed Laser Angioplasty: A Paradigm for Tissue Ablation

  • Joseph T. WalshJr.
Part of the Lasers, Photonics, and Electro-Optics book series (LPEO)


It had been theorized that the high rate of restenosis seen following balloon angioplasty could be decreased if the obstruction could be removed rather than simply pushed aside. It was proposed that pulsed lasers could be used to remove arterial obstructions. The purpose of this chapter is to present the theory and practice of pulsed laser ablation of tissue in light of the important and interesting therapeutic goal: removal of arterial obstructions.


Laser Ablation Thermal Damage Pulse Repetition Rate Pulse Laser Ablation YSGG Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross R. “Pathogenesis of atherosclerosis—an update,” New Engl. J. Med. 314: 488–500 (1986).CrossRefGoogle Scholar
  2. 2.
    Rogers WJ. “Angina Pectoris,” in Wyngaarden JB, Smith LH, Bennett JC (eds.), Cecil Textbook of Medicine, 19th ed., WB Saunders Co, Philadelphia, 1992, pp. 298–304.Google Scholar
  3. 3.
    Julian DG (ed.). Angina Pectoris, Churchill Livingston, New York, 1985.Google Scholar
  4. 4.
    Holmes DR, Bresnahan JF. “Interventional cardiology,” Cardiology Clin. 9: 115–134 (1991).Google Scholar
  5. 5.
    Cohen LH. “Surgical treatment of coronary artery disease,” in Wyngaarden JB, Smith LH, Bennett JC (eds.), Cecil Textb000k of Medicine, 19th ed., WB Saunders Co, Philadelphia, 1992, pp. 318–321.Google Scholar
  6. 6.
    Oraevsky AA, Jacques SL, Pettit GH, Saidi IS, Tittel FK, Henry PD. “XeCl laser ablation of atherosclerotic aorta: Optical properties and energy pathways,” Lasers Surg. Med. 12: 585–597 (1992).CrossRefGoogle Scholar
  7. 7.
    Hale GM, Querry MR. “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12: 555–563 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    Puliafito CA, Steinert RF, Deutsch TF, Hillenkamp F, Dehm EJ, Adler CM. “Excimer laser ablation of the cornea and lens,” Ophthalmology 92: 741–748 (1985).Google Scholar
  9. 9.
    Prince MR, Deutsch TF, Shapiro AH, Margolis RJ, Oseroff AR, Fallon JT, Parrish JA. “Selective ablation of atheromas using a flashlamp-excited dye laser at 465nm,” Proc. Natl. Acad. Sci. USA 84: 7064–7068 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    Mitchell DC, Prince MR, Frisoli JK, Smith RE, Wood RFM. “Beta carotene uptake into atherosclerotic plaque: Enhanced staining and preferential ablation with the pulsed dye laser,” Lasers Surg. Med. 13: 149–157 (1993).CrossRefGoogle Scholar
  11. 11.
    Walsh JT, Flotte TJ, Anderson RR, Deutsch TF. “Pulsed Co2 laser ablation: Effect of tissue type and pulse duration on thermal damage,” Lasers Surg. Med. 8: 108–118 (1988).CrossRefGoogle Scholar
  12. 12.
    Srinivasan R, Dyer RE, Braren B. “Far-UV laser ablation of cornea: Photoacoustic studies,” Lasers Surg. Med. 6: 524–527 (1984).Google Scholar
  13. 13.
    Srinivasan R. “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234: 559–565 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    Walsh JT, Deutsch TF. “Measurement of Er:YAG laser ablation plume dynamics,” Appl. Phys. B 52: 217–224 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    Pascala TJ, McDermid IS, Laudenslager JB. “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44: 658–660 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    Domankevitz Y, Nishioka NS. “Reflection during pulsed holmium laser irradiation of tissue,” Lasers Surg. Med. 9: 375–381 (1989).CrossRefGoogle Scholar
  17. 17.
    Weishammer S, Hibst R, Bellekens M, Steinert R. “Ultraviolet laser ablation of biologic tissue. Quantification of etch rate as a function of incident fluence,” Lasers Life Sci. 2: 125–135 (1988).Google Scholar
  18. 18.
    Walsh JT, Deutsch TF. “Er:YAG laser ablation of tissue: Measurement of ablation rates,” Lasers Surg. Med. 9: 327–337 (1989).CrossRefGoogle Scholar
  19. 19.
    Hibst R, Keller U. “Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate,” Lasers Surg. Med. 9: 338–344 (1989).CrossRefGoogle Scholar
  20. 20.
    Cummings JP, Walsh JT. “Q-switched laser ablation of tissue: plume dynamics and the effect of tissue mechanical properties,” in Jacques SL (ed.), Laser-Tissue Interactions III, Proc SPIE 1646: 242–253 (1992).Google Scholar
  21. 21.
    Cummings JP, Walsh JT. “Tissue tearing caused by pulsed laser induced ablation pressure,” Appl. Opt. 32: 493–503 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    Mainster MA, Sliney DH, Belcher CD, Buzney SM. “Laser photodisruptors damage mechanisms, instrument design and safety,” Ophthalmology 90: 973–991 (1983).Google Scholar
  23. 23.
    Ready JF. Industrial Applications of Lasers, Academic Press, New York, 1978, pp. 336–357.Google Scholar
  24. 24.
    Nishioka NS, Teng P, Deutsch TF, Anderson RR. “Mechanism of laser-induced fragmentation of urinary and biliary calculi,” Lasers Life Sci. 1: 231–246 (1987).Google Scholar
  25. 25.
    Dabby FUJ, Paek UC. “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. QE-8: 106–111 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    Schomaker KT, Walsh JT, Flotte TJ, Deutsch TF. “Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue,” Lasers Surg. Med. 10: 74–84 (1990).CrossRefGoogle Scholar
  27. 27.
    Zweig AD, Meierhofer B, Muller OM, Mischler C, Romano V, Frenz M, Weber HP. “Lateral thermal damage along laser incisions,” Lasers Surg. Med. 10: 262–274 (1990).CrossRefGoogle Scholar
  28. 28.
    Wantanabe S, Flotte TJ, McAuliffe DJ, Jacques SL. “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol. 90: 7561–7566 (1988).Google Scholar
  29. 29.
    Cothren RM, Hayes GB, Kramer JR, Sacks B, Feld MS. “A multifiber catheter with an optical shield for laser angiosurgery,” Lasers Life Sci. 1: 1–12 (1986).Google Scholar
  30. 30.
    Carslaw HS, Jaeger JC. Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, 1959, pp. 58–62.Google Scholar
  31. 31.
    Brugmans MJP, Kemper J, Gijbers GHM, Meulen FW van der, Gemert MJC van. “Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation,” Lasers Surg. Med.11: 587–594 (1991).CrossRefGoogle Scholar
  32. 32.
    Walsh JT, Cummings JP. “Tissue Tearing Caused by Pulsed Laser Induced Pressure,” in Jacques SL (ed.), Laser-Tissue Interactions, Proc. SPIE 1202: 12–21 (1990).Google Scholar
  33. 33.
    Long FH, Deutsch TD. “Pulsed photothermal radiometry of human artery,” IEEE J. Quantum Electron. QE-23: 1821–1826 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    Zweig AD, Frenz M, Romano V, Weber HP. “A comparative study of laser tissue interaction at 2.94 µm and 10.6 µm,” Appl. Phys. B 47: 254–265 (1988).ADSCrossRefGoogle Scholar
  35. 35.
    Walsh JT, Cummings JP. “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15: 295–305 (1994).CrossRefGoogle Scholar
  36. 36.
    Walsh JT, Flotte TJ, Deutsch TF. “Er:YAG laser ablation of tissue: Effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9: 314–326 (1989).CrossRefGoogle Scholar
  37. 37.
    Morelli J, Kibbi AG, Farinelli W, Boll J, Tan OT. “Ultraviolet excimer laser ablation: The effect of wavelength and repetition rate on in vivo guinea pig skin,” J. Invest. Dermatol. 88: 769–773 (1987).CrossRefGoogle Scholar
  38. 38.
    Leeuwen TG van, Erven L van, Meertens JH, Motamedi M, Post MJ, Borst C. “Origin of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19: 1610–1618 (1992).CrossRefGoogle Scholar
  39. 39.
    Cummings JP, Walsh, JT. “Erbium laser ablation: The effect of dynamic optical properties,” Appl. Phys. Lett. 62: 1988–1990 (1993).ADSCrossRefGoogle Scholar
  40. 40.
    Cummings JP, Walsh JT. “Thermal changes in the absorption spectrum of water near 6.1 µm,” Lasers Surg. Med. Suppl.5: 2–3 (1993).Google Scholar
  41. 41.
    Visuri SR, Cummings JP, Walsh JT. “Dynamics of the absorption coefficient of water using 2.1-µm laser radiation,” Lasers Surg. Med. Suppl. 5: 3 (1993).Google Scholar
  42. 42.
    Jansen ED, Leeuwen TG van, Motamedi M, Borst C, Welch AJ. “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14: 258–268 (1994).CrossRefGoogle Scholar
  43. 43.
    Graener H, Seifert G, Laubereau A. “New spectroscopy of water using tunable picosecond pulses in the infrared,” Phys. Rev. Lett. 66: 2092–2095 (1991).ADSCrossRefGoogle Scholar
  44. 44.
    Vodopyanov KL. “Bleaching of water by intense light at the maximum of the λ = 3 pm absorption band,” Sov. Phys. JETP 70: 114–121 (1990).Google Scholar
  45. 45.
    Vodopyanov KL. “Saturation studies of H20 and HDO near 3400 cm 1 using intense picosecond laser pulses,” J. Chem. Phys. 94: 5389–5393 (1991).ADSCrossRefGoogle Scholar
  46. 46.
    Ediger MN, Pettit GH, Weiblinger RP, Chen Ch. “Transmission of comeal collagen during ArF excimer laser ablation,” Lasers Surg. Med. 13: 204–210 (1993).CrossRefGoogle Scholar
  47. 47.
    Pettit GH, Ediger MN. “Pump/probe transmission measurements of corneal tissue during excimer laser ablation,” Lasers Surg. Med. 13: 363–367 (1993).CrossRefGoogle Scholar
  48. 48.
    Wolbarsht ML. “Laser surgery: CO2 or HF,” IEEE J. Quantum Electron. 20: 1427–1432 (1984).ADSCrossRefGoogle Scholar
  49. 49.
    Izatt JA, Sankey D, Partovi F, Fitzmaurice M, Rava RP, Itzkan I, Feld MS. “Ablation of calcified biological tissue using pulsed hydrogen fluoride laser radiation,” IEEE J. Quantum Electron. 26: 2261–2270 (1990).ADSCrossRefGoogle Scholar
  50. 50.
    Valderrama GL, Menefee RF, Krenek BD, Berry MJ, Satori MP, Henry PD, “Chemical laser interactions with human cadiovascular tissue,” in Jacques SL (ed.), Laser-Tissue Interactions, Proc. SPIE 1202: 149–158 (1990).Google Scholar
  51. 51.
    Stern D, Puliafito CA, Dobi ET, Reidy WT. “Infrared laser surgery of the cornea,” Ophthalmology 95: 1434–1441 (1988).Google Scholar
  52. 52.
    Nishioka N, Domankevitz Y. “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26: 2271–2275 (1990).ADSCrossRefGoogle Scholar
  53. 53.
    Cheong W, Prahl SA, Welch AJ. “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26: 2166–2185 (1990).ADSCrossRefGoogle Scholar
  54. 54.
    Bode G. “Das Verhalten des Eises im ultraroten Spektrum,” Ann. Phys. (Leipzig) 30: 326–336 (1909).ADSGoogle Scholar
  55. 55.
    Luck WAP. “Zur Assoziation des Wassers III. Die Temperaturabhangigkeit der Wasserbanden bis zum kritischen Punkt,” Ber. Bunsenges. Phys. Chem. 69: 626–637 (1965).Google Scholar
  56. 56.
    Falk M, Ford TA. “Infrared spectrum and structure of liquid water,” Can. J. Chem. 44: 1699– 1707 (1966).CrossRefGoogle Scholar
  57. 57.
    Zweig AD, Deutsch TF. “Shock waves generated by confined XeCI excimer laser ablation of polyimide,” Appl. Phys. B 54: 76–82 (1992).ADSCrossRefGoogle Scholar
  58. 58.
    Crawford T. “Thrombotic occlusion and the plaque,” in Jones RJ, Evolution of the Atherosclerotic Plaque, The University of Chicago Press, Chicago, 1963.Google Scholar
  59. 59.
    Walsh JT, Deutsch TF. “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med. 8: 264–275 (1988).CrossRefGoogle Scholar
  60. 60.
    Walsh JT, Deutsch TF. “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Transactions on Biomedical Engineering 36: 1195–1201 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joseph T. WalshJr.
    • 1
  1. 1.Biomedical Engineering DepartmentNorthwestern UniversityEvanstonUSA

Personalised recommendations