Skip to main content

Optical Fiber Sensors: Optical Sources

  • Chapter
  • 983 Accesses

Abstract

The extensive range of optical fiber sensors available places considerable demands on the illumination used (and the associated detectors) and a wide variety of optical sources may be employed to energize these sensor devices. For example, in the simplest types of optical sensors, such as those using shutter arrangements [1], the selection of the most appropriate type of illumination is relatively easy due to the limited constraints that there are upon the nature of the source itself. By contrast, in distributed optical fiber sensors using time-domain reflectometry [2], the requirement is for a light beam which only is available from sophisticated short pulse high power lasers, and spectroscopic sensors in particular require high spectral brightness to be effective [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spillman, W. B., Patriquin, D. R. and Gowne, D. H. (1989) Fiber optic linear displacement sensor based upon a variable period diffraction grating. Appl. Optics, 28. 3550–4.

    Article  ADS  Google Scholar 

  2. Rogers, A. J. (1981) POTDR: a technique for the measurement of field distributions. Appl. Optics 20. 1060–74.

    Article  ADS  Google Scholar 

  3. Mlanovich, F. P., Brown, S. B., Colston, B. W., Daly, P. F. and Langry, K. C. (1994) A Fiber Optic Sensor system for monitoring chlorinated hydrocarbon pollutants Talanta, 41, 2189–94.

    Article  Google Scholar 

  4. Grattan, K. T. V. and Ning, Y. N. (1998) Classification of optical fiber sensors in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T., Chapman and Hall, London, 1.

    Google Scholar 

  5. Jackson, D. A. (1998) Progress in optical fiber interferometry in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Press, London, 167–206.

    Google Scholar 

  6. Chen, S. and Meggitt, B. T. (1999) Intrinsic position sensing using optical fiber and coherence domain polarimetry in Optical Fiber Sensor Technology 3: Applications and systems, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Academic Press, London, 241.

    Google Scholar 

  7. Willard, H. H., Merritt, L. L., Dean, J. A. and Settle, F. A. (1988) Instrumental Methods of Analysis. 7th edn. Wandsworth, Belmont CA.

    Google Scholar 

  8. Solymar, L. and Walsh, D. (1979) Lectures on the Electrical Properties of Materials. 2nd edn, Oxford University Press, Oxford.

    Google Scholar 

  9. Accufiber Corporation (1986) Manufacturer’s data, Vancouver, Canada.

    Google Scholar 

  10. Zhang, Z., Grattan, K. T. V. and Palmer, A. W. (1992) Fiber optic temperature sensor based on the cross referencing between black body radiation and fluorescent lifetime. Rev. Sci. Instrum., 63. 3177–81.

    Article  ADS  Google Scholar 

  11. Osram GmbH (1991) Catalog on Light for Photo, Film, TV and Stage Applications

    Google Scholar 

  12. Pease. B. F. (1980) Basic Instrumental Analysis, Van Nostrand, New York.

    Google Scholar 

  13. Dress, P., Belz, M., Klein, K. F., Grattan, K. T. V. and Franke, H. (1998) Physical analysis of teflon-coated capillary waveguides. Sensor and Actuators B, 51, 278–84.

    Article  Google Scholar 

  14. Briggs, R., Grattan, K. T. V., Mouziz, Z. and Elvidge, A. F. (1990) On-line monitoring of residual chlorine, in Instrumentation Control and Automation of Water and Waste Water Treatment and Transport Systems, Pergamon Press, Oxford, pp. 27–38.

    Google Scholar 

  15. Ferendeci, A. M. (1991) Physical Foundations of Solid State and Electron Devices. McGraw-Hill, New York.

    Google Scholar 

  16. Kindl, H. and Mollmer, F. (1989) Opto semiconductors - briefly explained Siemens Aktiengesellschaft, Germany, data sheet #B143–B6225-x-x-7600.

    Google Scholar 

  17. Medlock, R. S. (1986) Review of modulating techniques for fibre optic sensors. Int. J. Opt. Sens. 1, 43–68.

    Google Scholar 

  18. Grattan, K. T. V., Selli, R. K. and Palmer, A. W. (1986) A prism configuration literally referenced temperature sensor. Int. J. Opt. Sens., 1, 507–14.

    Google Scholar 

  19. Grattan, K. T. V., Mouaziz, Z. and Palmer, A. W. (1987) Dual wavelength optical fibre sensor for pH measurement. Biosensors, 3, 17–25.

    Article  Google Scholar 

  20. Wang, W. M., Boyle, W. J. O., Grattan, K. T. V. and Palmer, A. W. (1993) Self-mixing interference in a diode laser: experimental observations and theoretical analysis. App. Opt., 32, 1551–57.

    Article  ADS  Google Scholar 

  21. Wang, Q., Ning, Y. N., Grattan, K. T. V. and Palmer, A. W. (1997) A multimode optical-fibre sensing system using white-light interferometry and a two-wavelength synthetic source. Sensors and Actuators A, 58, 191–5.

    Article  Google Scholar 

  22. Nakamura, S. (1998) Light emission moves into the blue. Physics World, 11, 31–5.

    Google Scholar 

  23. Amano, H. (1989) p-type conduction in Mg-doped GaN treated with low-energy electron beam iradiation (LEEBI). Japan J. Appl. Phys., 28, L2112.

    Google Scholar 

  24. Friend, R., Burroughes, J. and Shimoda, T. (1999) Polymer diodes, Phys. World, 12 (6), 35–40.

    Google Scholar 

  25. Wilson, J. and Hawkes, J. F. B. (1987) Lasers. Principles and Applications Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  26. Forrester, P. A. and Hulme, K. F. (1981) Laser rangefinders. Optics Quanta. Electron. 13, 259–93.

    Article  ADS  Google Scholar 

  27. Yariv, A. (1971) Introduction to Optical Electronics Holt, Rinehart and Winston, New York.

    Google Scholar 

  28. Wilson, J. and Hawkes, J. F. B. (1989) Optoelectronics, an Introduction, 2nd edn, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  29. Svelto, O. (1998) Principles of Lasers, 4th Edn. Plenum Press, New York.

    Google Scholar 

  30. Maiman, T. H. (1960) Stimulated optical radiation in ruby masers. Nature 187, 493.

    Article  ADS  Google Scholar 

  31. Hewlett Packard (1987) Laser Interferometer Measurement System JP5528A, Data Sheet (5952–7935).

    Google Scholar 

  32. Langford, N. (1998) Fiber lasers in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Press, London, 37.

    Google Scholar 

  33. Grattan, K. T. V., Palmer, A. W. and Selli, R. K. (1988) Ruby decay-time fluorescent thermometer in a fiber-optic configuration. Rev. Sci. Instrum. 59, 1328–35.

    Article  ADS  Google Scholar 

  34. Harvey, A. B. (1978) Coherent anti-Stokes Raman spectroscopy (CARS). Anal. Chem., 50, 905A.

    Google Scholar 

  35. Compton, R. H., Grattan, K. T. V. and Morrow, T. (1980) Photophysical parameters for potential vapor phase dye laser mdedia. Appl. Phys., 22, 307–14.

    Article  ADS  Google Scholar 

  36. Grattan, K. T. V., Zhang, Z. Y. and Sun, T. (1998) Luminescent optical fibers in sensing, in Optical Fiber Sensor Technology, 4. Environmental and Chemical Sensing (eds. Grattan, K. T. V. and Meggitt, B. T. ). Chapman and Hall, London, 205.

    Google Scholar 

  37. Rao, Y. J. and Jackson, D. A. (1999) Principles of Fiber-Optic Interferometry in sensing in Optical Fiber Sensor Technology, 1. (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London, 167.

    Google Scholar 

  38. Bosch, T. and Lescure, M. (1995) Selected Papers on Laser Distance Measurement SPIE Milestone Series, Volume MS 115

    Google Scholar 

  39. Loveland, D. G. and Webb. C. E. (1992) Measurement of the electron density in a strontium vapour laser. J. Phys. D: Appl. Phys. 25, 597–601.

    Article  ADS  Google Scholar 

  40. Spectra Diode (1991) Laboratories Product Catalog. Palo Alto, CA.

    Google Scholar 

  41. Dakin, J. P., Pratt, D. J., Bilsby, G. and Ross, N. (1985) Distributed anti-Strokes Raman thermometry. Proceedings 3rd OFS (International Conference on Optical Fiber Sensors). San Diego, CA. USA. Post-deadline paper PDS3 (IEEE/USA).

    Google Scholar 

  42. Compton, R. H., Grattan, K. T. V. and Morrow, T. (1980) Extinction coefficients and quantum yields for triplet-triplet absorption using laser flash photolysis. J. Photochem, 14, 61–6.

    Article  Google Scholar 

  43. Ewing, J. J. (1979) Excimer Lasers in Laser Handbook Vol. 3 (ed: Stitch, M. L.), North-Holland, Amsterdam, 135–97.

    Google Scholar 

  44. Klein, K-F., Schliessmann, P. and Smolka, E. (1997) UV-stabilized silica-based fiber for applications around 200nm wavelength. Sens. Actuators, B39, 305–9.

    Article  Google Scholar 

  45. Handerek, V. Fiber gratings: principles, fabrication and properties in Optical Fiber Sensor Technology Vol.2: Devices and Technology (eds. Grattan, K. T. V. and Meggitt, B. T.), Kluwer Academic Publishers, London, 329.

    Google Scholar 

  46. Sharp Ltd (1992) Manufacturer’s Data Book.

    Google Scholar 

  47. Snitzer, E., Po, H., Hakimi, F., Tumminelli, R. and Mccollum, B. C. (1988) Double-clad offset core Nd fiber laser. Proc. OFS’88, New Orleans, Postdeadline paper, PD5.

    Google Scholar 

  48. Reekie, L., Mears, R. J., Poole, S. B. and Payne, D. N. (1986) Tunable single-mode fiber lasers. IEEE/OSA J. Lightwave Technol. LT-4(7), 956–60.

    Google Scholar 

  49. Nakazawa, M., Kimura, Y. and Susuki, K. (1989) Efficient Era+-doped optical fiber amplifier pumped by a 1.48µm InGaAsP laser diode, Appl. Phys. Lett., 54 (4), 295–7.

    Article  ADS  Google Scholar 

  50. Kimura, Y., Susuki, K. and Nakazawa, M. (1989) Laser-diode-pumped mirror-free Era+-doped fiber laser. Opt. Lett., 14 (18), 999–1001.

    Article  ADS  Google Scholar 

  51. Digonnet, M. J. F. (1993) Rare Earth Doped Fiber Lasers and Amplifiers. Marcel Dekker, New York, 1993.

    Google Scholar 

  52. Langford, N. Optical fiber lasers in Optical Fiber Sensor Technology Vol.2: Devices and Technology (eds. Grattan, K. T. V. and Meggitt, B. T.), Kluwer Academic Publishers, London, 37.

    Google Scholar 

  53. Muto, S. (1993) Fiber dye lasers and sensors using fluorescent dye-doped plastic fibers. POF’93, Hague, June 28–29, 1993, 149–152.

    Google Scholar 

  54. Sharma, P. K., van Doom, A. R., Staring, E. G. J. (1993) Optical gain in rare earth doped polymer amplifiers. POF’93, Hague, June 28–29, 1993, 115–117.

    Google Scholar 

  55. Chu, P. L. and Peng, G. D. (1997) Dye doped and rare earth doped polymer optical fibres. POF’97, Hawaii, USA, Sept. 1997, 76–77.

    Google Scholar 

  56. Editorial: Laser Focus World (1999), Feburary, p5, USA

    Google Scholar 

  57. Barnes, W. L., Dakin, J. P., Edwards, H. et al (1992) Tunable fiber laser source for methane detection at 1.681Am. Proc SPIE, 1796.

    Google Scholar 

  58. Crossley, S. D. (1992) Review of emitters and detectors for optical gas and chemical sensing. Proc SPIE, 1796.

    Google Scholar 

  59. Laser Focus World, USA (published monthly)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grattan, K.T.V. (2000). Optical Fiber Sensors: Optical Sources. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6081-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6081-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4983-7

  • Online ISBN: 978-1-4757-6081-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics