Principles of Fiber-Optic Interferometry

  • Y. J. Rao
  • D. A. Jackson
Chapter

Abstract

Optical interferometers are well-known for their ability to make high-precision measurements of optical path difference (OPD) or changes that may be induced by a physical displacement or a refractive index change in the interferometer. Various configurations of interferometers had been demonstrated using traditional light sources with relatively short coherence lengths, long before the invention of the laser in 1960; these conventional interferometers are well identified with the founders of modern optics, such as Newton, Young and Michelson. However, the applications of optical interferometers were limited greatly by the poor spatial and temporal coherence and directionality of the available optical sources. The invention of the laser in the early 1960s had a dramatic impact on optical interferometry as much larger OPDs could be measured due to the greater temporal and spatial coherence and the much better directionality of the laser, for example the He-Ne laser. Also, the measurement precision could be improved considerably due to the greater brightness of the laser. Vibration measurement with sub-Angstrom resolution had been demonstrated [1]. Laser-based interferometry has become a standard technique for distance and vibration measurement. However, such measurement systems are generally restricted to laboratory environments due to the fundamental requirement to maintain the relative alignment of the internal optical beams constant, as this critical alignment can be easily perturbed by random noise unless the instrument is properly engineered. With the development of low-loss optical fibers and their associated fiber-optic components, all-fiber-optic versions of many of the classical interferometers have been introduced. The incorporation of fiber optic components into the interferometer allows the construction of robust and versatile systems capable of remote operation, lending to the generation of general purpose sensors for any physical parameter that affects, directly or indirectly, the OPD within one of the fiber arms. This has made it possible to use optical interferometers outside the laboratory for the measurement of many physical variables. Although fabricating an optical interferometer from optical fibers solves many of the alignment problems discussed above, the nature of the mode of operation of the optical fiber, correctly termed an optical waveguide, can give rise to significant problems due to its modal characteristics (birefringence).

Keywords

Ring Resonator Signal Beam Michelson Interferometer Optical Path Difference Fringe Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moss, G. E., Miller, L. R. and Forward, R. L. (1971) Photo-noise-limited laser transducer for gravitational antenna. Appl. Opt., 10, 2495.ADSCrossRefGoogle Scholar
  2. 2.
    Jackson, D. A. (1985) Monomode optical fibre interferometers for precision measurement. J. Phys. E: Sci. Instrum., 18, 981–1001.ADSCrossRefGoogle Scholar
  3. 3.
    Jackson, D. A. (1994) Recent progress in monomode fibre-optic sensors. Meas. Sci. Technol., 5, 621–38.ADSCrossRefGoogle Scholar
  4. 4.
    Lefevre, H. C. (1993) The Fibre Optic Gyroscope ( Boston: Artech House).Google Scholar
  5. 5.
    Rao, Y. J. and Jackson, D. A. (1996) Recent Progress in Fibre-Optic Low-Coherence Interferometry. Meas. Sci. and Technol, 7, 981–99.ADSCrossRefGoogle Scholar
  6. 6.
    Rao, Y. J. (1997) In-Fibre Bragg Grating Sensors. Meas. Sci. and Technol., 8, 355–75.ADSCrossRefGoogle Scholar
  7. 7.
    Lefevre, H. C. (1980) Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett., 16, 778–80.ADSCrossRefGoogle Scholar
  8. 8.
    Kersey, A. D., Marrone, M. J. and Davis, M. A. (1991) Polarisation insensitive fibre optic Michelson interferometer. Electron. Lett., 27, 518–9.ADSCrossRefGoogle Scholar
  9. 9.
    Wilson, J. and Hawkes, J. F. B. (1983) Optoelectronics: An Introduction, ( London: Prentice-Hall ), 109–11.Google Scholar
  10. 10.
    Jackson, D. A., Dandridge, A. and Sheem, S. K. (1980) Measurement of small phase shifts using a single-mode optical fibre interferometer. Opt. Leu., 5, 139–41.ADSCrossRefGoogle Scholar
  11. 11.
    Vanclooster, R. and Phariseau, P. (1970) The coupling of two parallel dielectric fibres: Parts I and II. Physica, 47, 485–514.ADSCrossRefGoogle Scholar
  12. 12.
    Marcuse, D. (1971) The coupling of degenerate modes in two parallel dielectrical waveguides. Bell. Syst. Tech. J., 50, 1791–816.Google Scholar
  13. 13.
    Kanada, T. and Nawata, K. (1979) Injection laser characteristics due to reflected optical power. IEEE J. Quantum Electron. 15, 559–65.ADSCrossRefGoogle Scholar
  14. 14.
    Jackson, D. A., Priest, R. P., Dandridge, A. and Tveten, A. B. (1980) Elimination of drift in a single-mode optical fibre interferometer using a piezo-electrical stretched coiled fibre. Appl. Opt., 19, 2926.ADSCrossRefGoogle Scholar
  15. 15.
    Cielo, P. G. (1979) Fibre optic hydrophone: improved strain configuration and environmental noise protection. Appl. Opt., 18, 2933.ADSCrossRefGoogle Scholar
  16. 16.
    Kersey, A. D., Jackson, D. A. and Corke, M. (1983) A simple fibre Fabry-Perot sensor. Opt. Commun., 45, 71–4.ADSCrossRefGoogle Scholar
  17. 17.
    Lee, C. E. and Taylor, H. F. (1988) Interferometric optical fibre sensors using internal mirrors. Electron. Lett., 24, 193–4.CrossRefGoogle Scholar
  18. 18.
    Santos, J. L., Leite, A. P. and Jackson, D. A. (1992) Optical fibre sensing with a low finesse Fabry-Perot cavity. Appl. Opt., 31, 7361–6.ADSCrossRefGoogle Scholar
  19. 19.
    Marcuse, D. (1977) Loss analysis of single-mode fiber splices. Bell. Syst. Tech. J. 56, 703–18.Google Scholar
  20. 20.
    Rao, Y. J. and Huang, S. L. (1988) Study on the splice loss theory for single-mode fibers. Proc. SPIE, 988, 196–200.CrossRefGoogle Scholar
  21. 21.
    Murphy, K. A., Gunther, M. F., Vengsarkar, A. M. and Claus, R. O. (1991) Quadrature phase-shifted, extrinsic Fabry-Perot optical fibre sensors. Opt. Lett. 16, 273–5.ADSCrossRefGoogle Scholar
  22. 22.
    Rao, Y. J., Jackson, D. A., Jones, R. and Shannon, C. (1994) Development of prototype fibre-based Fizeau pressure sensors with temperature compensation. J. Lightwave Technol., 12, 1685–95.ADSCrossRefGoogle Scholar
  23. 23.
    Born, M. and Wolf, E. (1986) Principles of Optics, 6th Edition ( New York: Pergamon).Google Scholar
  24. 24.
    Bosselmann, T. and Ulrich, R. (1984) High-accuracy position-sensing with fibre-coupled white-light interferometers. Proc. 3rd Int. Conf. on Optical Fibre Sensors ( Stuttgart, F. R. G ). 361–5.Google Scholar
  25. 25.
    Rao, Y. J., Ning, Y. N. and Jackson, D. A. (1993) Synthesized source for white-light sensing systems. Opt. Lett. 18, 462–4.ADSCrossRefGoogle Scholar
  26. 26.
    Kersey, A. D. and Dandridge, A. (1987) Dual-wavelength approach to interferometric sensing. Proc. SPIE, 798, 176–81.CrossRefGoogle Scholar
  27. 27.
    Jackson, D. A., Kersey, A. D., Corke, M. and Jones, J. D. C. (1982) Pseudo-heterodyne detection scheme for optical interferometers. Electron. Lett. 18, 1081–2.CrossRefGoogle Scholar
  28. 28.
    Lee, C. E. and Taylor, H. F. (1991) Fibre-optic Fabry-Perot Temperature sensor using a low-coherence light source. J. Lightwave Technol. 9, 129–34.ADSCrossRefGoogle Scholar
  29. 29.
    Rao, Y. J., Webb, D. A. and Jackson, D. A. (1993) Design study of fibre-optic based Fabry-Perot type interferometric sensors using low-coherence signal recovery. Proc. SPIE, 2070, 35.Google Scholar
  30. 30.
    Stone, J. (1985) Optical fibre Fabry-Perot interferometer with finesse of 300. Electron. Lett., 21, 504–5.ADSGoogle Scholar
  31. 31.
    Stokes, L. F., Chodorow, M. and Shaw, H. J. (1982) Sensitive all single-mode-fibre resonant ring interferometer. Opt. Lett., 7, 288–90.ADSCrossRefGoogle Scholar
  32. 32.
    Yve, C. M., Peng, J. D., Liao, Y. B. and Zhou, B. K. (1988) Fibre ring resonator with finesse of 1260. Electron. Lett., 24, 622–3.CrossRefGoogle Scholar
  33. 33.
    Hotate, K. (1996) Future evolution of fibre optic gyros. Proc. OFS’11, ( Sapporo, Japan ), 62–5.Google Scholar
  34. 34.
    Hill, K. O., Fujii, F., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity on optical fibre waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–9.ADSCrossRefGoogle Scholar
  35. 35.
    Morey, W. W., Meltz, G. and Glenn, W. H. (1989) Fibre optic Bragg grating sensors. Proc. SPIE, 1169, 98–107.Google Scholar
  36. 36.
    Kogelnick, H. (1969) Coupled wave theory of thick holograms. Bell. Syst. Tech. J, 48, 2909.Google Scholar
  37. 37.
    Kogelnick, H. (1979) Filter response of nonuniform almost-periodic gratings. Bell. Syst. Tech. J, 55, 109.Google Scholar
  38. 38.
    Ball, G. A. and Morey, W. W. Continuously tunable single-mode fibre laser. Opt. Lett. 17, 420–2.Google Scholar
  39. 39.
    Rashleigh, S. C. (1980) Acoustic sensing with a single coiled monomode fibre. Opt. Lett., 5, 392–4.ADSCrossRefGoogle Scholar
  40. 40.
    Rashleigh, S. C. (1983) Polarimetric sensors: exploiting the axial stress in high birefringence fibres. Proc. OFS’1 ( London: IEE ), 210–3.Google Scholar
  41. 41.
    Smith, A. M. (1978) Polarisation and magneto-optic properties of single-mode optical fibre. Appl. Opt., 17, 52.ADSCrossRefGoogle Scholar
  42. 42.
    Rogers, A. J. (1980) Optical-fibre current measurement. Int. J. Optoelectronics, 3, 391–407.Google Scholar
  43. 43.
    Day, G. W., Deeter, M. N. and Rose, A. H. (1992) Faraday effect sensors: A review of recent progress. Proc. SPIE, PM07, 11.Google Scholar
  44. 44.
    Rogers, A. J., Xu, J. and Yao, J. (1994) Vibration immunity for optical-fibre current measurement. Proc. SPIE, 2360 (OFS’10: Glasgow), 40–4.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Y. J. Rao
  • D. A. Jackson

There are no affiliations available

Personalised recommendations