Referencing Schemes for Intensity Modulated Optical Fiber Sensor Systems

  • G. Murtaza
  • J. M. Senior


For nearly two decades, intensity modulation has remained as one of the most extensively investigated forms of optical signal modulation for sensing applications [1–10]. The simple reason for the extensive and diversified usage of this modulation scheme is a multitude of potential benefits that include the inherent simplicity, reliability, flexibility and relatively low costs. Although intensity modulated optical fiber sensors have been fabricated in many different designs and with varying degrees of complexity, the essential building blocks of a simple optical fiber sensor system are depicted in figure 5.1. Light from an optical source, such as an LED, is coupled into an optical fiber for transmission to the optical sensor where it can be modulated in accordance with the state of a measurand. When using reflection-mode sensing the modulated optical signal is retroreflected into the same optical fiber for transmission to the photodetector [8]. However, in transmission-mode sensing a second optical fiber is normally used for the transmission of the modulated signal to the photodetector.


Optical Signal Fiber Bragg Grating Output Port Dual Wavelength Optical Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGlade, S. M. (1981) Optical sensors for displacement measurement. The Marconi Review, second qtr., 119–36.Google Scholar
  2. 2.
    Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Sigel, G. H., Cole, J. H., Rashleigh, S. C. and Priest, R. G. (1982) Optical fiber sensor technology. IEEE J. Quantum Electronics, QE-18 (4), 626–65.Google Scholar
  3. 3.
    Grover, D. J. (1984) Fibre optics inventions assigned to the British Technology Group from universities in the United Kingdom, Proc SPIE, 468, Fibre Optics ‘84, (Sira) London, 28–48.Google Scholar
  4. 4.
    Nakayama Takashi (1984), Optical sensing technologies by multimode fibers. Proc SPIE, 478, Fiber Optic and Laser Sensors II ‘84, 19–26.Google Scholar
  5. 5.
    Pitt, G. D., Extance, P., Neat, R. C., Batchelder, D. N., Jones, R. E., Barnett, J. A. and Pratt, R. H. (1985) Optical Fibre Sensors. IEE Proc, 132, Pt. J, No 4, 214–48.Google Scholar
  6. 6.
    Krohn, D.A. (1986) Intensity Modulated Fiber Optic Sensors Overview. Proc SPIE, 718, Fiber Optic and Laser Sensors IV, 2–11.Google Scholar
  7. 7.
    Medlock, R. S. (1986) Review of modulating techniques for fibre optic sensors. J. Opt. Sensors, 1 (1), 43–68.Google Scholar
  8. 8.
    Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1989) Dual wavelength intensity modulated optical fibre sensor system. Proc SPIE 1120 Fibre Optics ‘89, 3327.Google Scholar
  9. 9.
    Kersey, A. D. (1996) A review of recent developments in fiber optic sensor technology. Optical Fiber Technology, 2, 291–317.ADSCrossRefGoogle Scholar
  10. 10.
    Othonos, A. (1997) Fiber Bragg gratings. Rev. Sci. Instrum., 68, 4309–4341.ADSCrossRefGoogle Scholar
  11. 11.
    Jones, B. E. (1985) Optical fibre sensors and systems for industry. J. Phys. E: Sci. Instrum., 18, 770–81.ADSCrossRefGoogle Scholar
  12. 12.
    Jones, B. E. (1977) Instrumentation, Measurement, and Feedback. McGraw-Hill Book Company (UK) Ltd..Google Scholar
  13. 13.
    Gardiner, P. T., Edwards, R. A. (1987) Fibre optics sensors (FOS) for aircraft flight controls. Proc Applications of Light in Guided Flight, Royal Aeronautical Society, 4263.Google Scholar
  14. 14.
    Jin, X., Liao, Y., Lai, S. and Zhao, H. (1995) Single-LED optical fiber sensor system using a novel polarization-modulated compensation technique. Proc SPIE, 2594, Self-Calibrated Intelligent Optical Sensors and Systems, 243–8.Google Scholar
  15. 15.
    Culshaw, B., Foley, J. and Giles, I. P. (1985) A balancing technique for optical fibre intensity modulated transducers. Proc. Optical Fibre Sensors ‘85, 117–20.Google Scholar
  16. 16.
    Giles, I. P., McNeill, S. and Culshaw, B. (1985) A stable remote intensity based optical fibre sensor. J. Phys. E: Sci. Instrum., 18, 502–4.Google Scholar
  17. 17.
    Beheim, G. and Anthan, D. J. (1986) Loss-compensation of intensity-modulating fibre-optic sensors. Proc SPIE, 718, Fibre Optic and Laser Sensors IV, 259–65.Google Scholar
  18. 18.
    Beheim, G., Anthan, D. J., Rys, J. R., Fritsch, K. and Ruppe, W. R. (1988) Modulatedsplitting-ratio fiber-optic temperature sensor. Proc SPIE, 985, Fibre Optic and Laser Sensors VI, 82–8.Google Scholar
  19. 19.
    Bois, E., Huard, S. J. and Boisde, G. (1988) Loss Compensated Remote Fiber Optic Displacement Sensors for Industrial applications. Proc. EFOC/LAN 88, 246–50.Google Scholar
  20. 20.
    Martens, G., Kordts, J. and Weidinger, G. (1989) A Photo-elastic Pressure Sensor with Loss-Compensated Fiber Link. Springer Proceedings in Physics, 44, Optical Fiber Sensors, 458–63.Google Scholar
  21. 21.
    Bing, Q., Wei, P., Shunping, R. and Junxiu, L. (1996) Studies on the long-term stability of fiber optic pressure sensor. Proc SPIE, 2895, Fiber Optic Sensors V, 445–50.Google Scholar
  22. 22.
    Senior, J. M. and Cusworth, S. D. (1987) Intensity Modulated Optical Fibre Sensors Employing Graded Index Rod Lenses. IOP Short Meetings Series 7, Fibre Optic Sensors, Glasgow, 89–93.Google Scholar
  23. 23.
    Shaik, M. A. (1989) Design and analysis of fiber optic position sensor. Proc SPIE, 1169, Fiber Optic and Laser Sensors VII, 473–84.Google Scholar
  24. 24.
    Cockshot, C. P. and Pacaud, S. J. (1989) Compensation of an optical fiber reflective sensor. Sensors and Actuators, 17, 167–71.CrossRefGoogle Scholar
  25. 25.
    Moiseyev, V. V. and Potapov, V. T. (1988) Analysis of the Stability of Reflection-Type Fiber-Optic Sensors. Telecommunications and Radio Engineering Part 2, 43, No 9, 72–5.Google Scholar
  26. 26.
    Corke, M., Gillham, F., Hu, A., Stowe, D. W. and Sawyer, L. (1988) Fiber Optic Pressure Sensors employing reflective Diaphragm Techniques. Proc SPIE, 985, Fiber Optic and Laser Sensors VI, 164–71.Google Scholar
  27. 27.
    Berthold, J. W., Ghering, W. L. and Varshineya, D. (1987) Design and Characterization of a High Temperature Fibre-Optic Pressure Transducer. Journal of Lightwave Technology, LT-5, No 7, 870–6.Google Scholar
  28. 28.
    Spillman, W. B., Fuhr, P. L. and Kajenski, P. J. (1988) Self-referencing Fiber Optic Rotary Displacement Sensor. Proc SPIE, 985, Fiber Optic and Laser Sensors VI, 30510.Google Scholar
  29. 29.
    Iwamoto, K. and Kamata, I. (1990) Pressure sensor using optical fibers. Appl. Optics, 29 (3), 375–8.ADSCrossRefGoogle Scholar
  30. 30.
    Ayub, M., Spooncer, R. C. and Jones, B. E. (1988) Environmentally compensated photoelastic pressure sensors with optical fibre links. Proc SPIE, 1011, Fiber Optic Sensors III, 130–5.Google Scholar
  31. 31.
    Ramakrishnan, L., Unger, L. and Kist, R. (1988) Line loss independent fiberoptic displacement sensor with electrical subcarrier phase encoding. Technical Digest Series, 2, Optical Fiber Sensors, 133–6.Google Scholar
  32. 32.
    Kalinowski, H. J., Valente, L. C. G. and da Silveira Jr. I. I. (1992) Optical thermometer using a short bend of single-mode fiber. Proc SPIE, 1795, Fiber Optic and Laser Sensors X, 261–5.Google Scholar
  33. 33.
    Williams, B. A. and Dewhurst, R. J. (1995) Differential fiber-optic sensing of laser generated ultrasound. Electronics Letters, 31 (5), 391–2.CrossRefGoogle Scholar
  34. 34.
    Adamovsky, G. (1986) Time domain referencing in intensity modulation fiber optic sensing systems. Proc SPIE, 661, Optical Testing and Metrology, 145–51.Google Scholar
  35. 35.
    Lammerink, T. S. J. and Fluitman, J. H. J. (1984) Measuring method for optical fibre sensors. J. Phys. E: Sci. Instrum., 17, 1127–9.ADSCrossRefGoogle Scholar
  36. 36.
    Spillman, W. B. and Lord, J. R. (1987) Self-Referencing Multiplexing Technique for Fibre Optic Intensity Sensors. Journal of Lightwave Technology, LT-5(7), 865–9.Google Scholar
  37. 37.
    Bacci, M., Brenci, M., Conforti, G., Falciai, R., Mignani, A. G., Scheggi, A. M. (1986) Thermochromic transducer optical fibre thermometer. Appl. Optics, 25 (7), 1079–82.ADSCrossRefGoogle Scholar
  38. 38.
    Jones, B. (1986) The pig that looks after railway lines. Sensor Review, 6 (4), 199–201.CrossRefGoogle Scholar
  39. 39.
    Scheggi, A. M., Bacci, M., Brenci, M., Conforti, G., Falciai, R., Mignani, A. G. (1987) Thermometery by optical fibers and a thermochromic transducer. Optical Engineering, 26 (6), 534–7.CrossRefGoogle Scholar
  40. 40.
    Conforti, G., Brenci, M., Mencaglia, A. and Magnani, A. G. (1989) Fiber-optic thermometric probe utilizing GRIN lenses. Appl. Optics, 28 (3), 577–80.ADSCrossRefGoogle Scholar
  41. 41.
    Liu, X. P., Spooncer, R. C. and Jones, B. E. (1991) An Optical Fibre Displacement Sensor with Extended Range Using Two-wavelength Referencing. Sensors and Actuators, A 25(1–3), 197–200.Google Scholar
  42. 42.
    Schoener, G., Bechtel, J. H. and Salour, M. M. (1985) Novel fiber coupler for optical fibre temperature sensor. Proc. Optical Fibre Sensors ‘85, 203–6.Google Scholar
  43. 43.
    Dakin, J. P., Wade, C. A. and Withers, P. B. (1988) An Optical Fibre Sensor for the Measurement of Pressure. Fiber and Integrated Optics, 7, 35–46.CrossRefGoogle Scholar
  44. 44.
    Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1992) Single LED based dual wavelength referenced optical fibre sensor system using intensity modulation. Optics und Laser Technology, 24 (4), 187–92.ADSCrossRefGoogle Scholar
  45. 45.
    Wang, G. Z., Wang, A., May, R. G., Barnes, A., Murphy, K. A. and Claus, R. O. (1995) Stabilization for intensity-based sensors using two-wavelength ratio technique. Proc SPIE,2594 Self-Calibrated Intelligent Optical Sensors and Systems,41–51.Google Scholar
  46. 46.
    Murtaza, G. and Senior, J. M. (1995) Dual wavelength referencing of optical fibre sensors. Optics Communications, 120, 348–57.ADSCrossRefGoogle Scholar
  47. 47.
    Cavaleiro, P. M., Ribeiro, A. B. L. and Santos J. L. (1995) Referencing technique for intensity-based sensors using fibre optic Bragg gratings. Electronics Letters, 31 (5), 3924.CrossRefGoogle Scholar
  48. 48.
    Senior, J. M. and Murtaza, G. (1995) Optical fibre sensor system. European Patent No. EPO470168BI Google Scholar
  49. 49.
    Thylen, L., Karlsson, G.,and Nilsson, O. (1996) Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics. IEEE Communications Magazine,106–13.Google Scholar
  50. 50.
    Adams, M. J, Barnsley, P. E., Burton, D. A., Davies, D. A. O., Fiddyment, P. J., Fisher, M. A., Mace, D. A. H., Mudhar, P. S., Robertson, M. J., Singh, J. and Wickes, H. J. (1993) Novel components for optical switching. BT Technical Journal, 11 (2), 89–97.Google Scholar
  51. 51.
    Murtaza, G. and Senior, J. M. (1994) Wavelength selection strategies to enhance referencing in LED based optical sensors. Optics Communications, 112, 201–13.ADSCrossRefGoogle Scholar
  52. 52.
    Hill, K. O. and Meltz, G. (1997) Fiber Bragg grating technology fundamentals and overview. Journal ofLightwave Technology, 15 (8), 1263–76.ADSCrossRefGoogle Scholar
  53. 53.
    Murtaza, G. and Senior, J. M. (1997) Influence of LED thermal drifts on optical cross talk in spectrally sliced WDM systems. Microwave and Optical Technology Letters, 14 (3), 153–5.CrossRefGoogle Scholar
  54. 54.
    Dakin, J. and Culshaw, B. (1989). Optical fibre Sensors: systems and applications. vol. I, Artech House, Inc.Google Scholar
  55. 55.
    Romaniuk, R. S. and Dorosz, J. (1989) Multicore micro-optics. International J. of Optoelectronics, 4 (3/4), 201–19.Google Scholar
  56. 56.
    Cozens, J. R., Green, M. and Gu, Y. (1988) Special Fibres for Sensing. Proc SPIE, 1011, Fiber Optic Sensors III, 62–6.Google Scholar
  57. 57.
    Kociszewski, L., Stepieh, R. and Buzniak, J. (1988) New manufacturing method of sensor oriented optical fibres. Proc SPIE, 1011, Fiber Optic Sensors III, 71–80.Google Scholar
  58. 58.
    Grosskopf, K. G. (1988) Integrated optics for sensors. Proc SPIE, 1011, Fiber Optic Sensors III, 38–45.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • G. Murtaza
  • J. M. Senior

There are no affiliations available

Personalised recommendations