Skip to main content

Referencing Schemes for Intensity Modulated Optical Fiber Sensor Systems

  • Chapter
Optical Fiber Sensor Technology
  • 756 Accesses

Abstract

For nearly two decades, intensity modulation has remained as one of the most extensively investigated forms of optical signal modulation for sensing applications [1–10]. The simple reason for the extensive and diversified usage of this modulation scheme is a multitude of potential benefits that include the inherent simplicity, reliability, flexibility and relatively low costs. Although intensity modulated optical fiber sensors have been fabricated in many different designs and with varying degrees of complexity, the essential building blocks of a simple optical fiber sensor system are depicted in figure 5.1. Light from an optical source, such as an LED, is coupled into an optical fiber for transmission to the optical sensor where it can be modulated in accordance with the state of a measurand. When using reflection-mode sensing the modulated optical signal is retroreflected into the same optical fiber for transmission to the photodetector [8]. However, in transmission-mode sensing a second optical fiber is normally used for the transmission of the modulated signal to the photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGlade, S. M. (1981) Optical sensors for displacement measurement. The Marconi Review, second qtr., 119–36.

    Google Scholar 

  2. Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Sigel, G. H., Cole, J. H., Rashleigh, S. C. and Priest, R. G. (1982) Optical fiber sensor technology. IEEE J. Quantum Electronics, QE-18 (4), 626–65.

    Google Scholar 

  3. Grover, D. J. (1984) Fibre optics inventions assigned to the British Technology Group from universities in the United Kingdom, Proc SPIE, 468, Fibre Optics ‘84, (Sira) London, 28–48.

    Google Scholar 

  4. Nakayama Takashi (1984), Optical sensing technologies by multimode fibers. Proc SPIE, 478, Fiber Optic and Laser Sensors II ‘84, 19–26.

    Google Scholar 

  5. Pitt, G. D., Extance, P., Neat, R. C., Batchelder, D. N., Jones, R. E., Barnett, J. A. and Pratt, R. H. (1985) Optical Fibre Sensors. IEE Proc, 132, Pt. J, No 4, 214–48.

    Google Scholar 

  6. Krohn, D.A. (1986) Intensity Modulated Fiber Optic Sensors Overview. Proc SPIE, 718, Fiber Optic and Laser Sensors IV, 2–11.

    Google Scholar 

  7. Medlock, R. S. (1986) Review of modulating techniques for fibre optic sensors. J. Opt. Sensors, 1 (1), 43–68.

    Google Scholar 

  8. Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1989) Dual wavelength intensity modulated optical fibre sensor system. Proc SPIE 1120 Fibre Optics ‘89, 3327.

    Google Scholar 

  9. Kersey, A. D. (1996) A review of recent developments in fiber optic sensor technology. Optical Fiber Technology, 2, 291–317.

    Article  ADS  Google Scholar 

  10. Othonos, A. (1997) Fiber Bragg gratings. Rev. Sci. Instrum., 68, 4309–4341.

    Article  ADS  Google Scholar 

  11. Jones, B. E. (1985) Optical fibre sensors and systems for industry. J. Phys. E: Sci. Instrum., 18, 770–81.

    Article  ADS  Google Scholar 

  12. Jones, B. E. (1977) Instrumentation, Measurement, and Feedback. McGraw-Hill Book Company (UK) Ltd..

    Google Scholar 

  13. Gardiner, P. T., Edwards, R. A. (1987) Fibre optics sensors (FOS) for aircraft flight controls. Proc Applications of Light in Guided Flight, Royal Aeronautical Society, 4263.

    Google Scholar 

  14. Jin, X., Liao, Y., Lai, S. and Zhao, H. (1995) Single-LED optical fiber sensor system using a novel polarization-modulated compensation technique. Proc SPIE, 2594, Self-Calibrated Intelligent Optical Sensors and Systems, 243–8.

    Google Scholar 

  15. Culshaw, B., Foley, J. and Giles, I. P. (1985) A balancing technique for optical fibre intensity modulated transducers. Proc. Optical Fibre Sensors ‘85, 117–20.

    Google Scholar 

  16. Giles, I. P., McNeill, S. and Culshaw, B. (1985) A stable remote intensity based optical fibre sensor. J. Phys. E: Sci. Instrum., 18, 502–4.

    Google Scholar 

  17. Beheim, G. and Anthan, D. J. (1986) Loss-compensation of intensity-modulating fibre-optic sensors. Proc SPIE, 718, Fibre Optic and Laser Sensors IV, 259–65.

    Google Scholar 

  18. Beheim, G., Anthan, D. J., Rys, J. R., Fritsch, K. and Ruppe, W. R. (1988) Modulatedsplitting-ratio fiber-optic temperature sensor. Proc SPIE, 985, Fibre Optic and Laser Sensors VI, 82–8.

    Google Scholar 

  19. Bois, E., Huard, S. J. and Boisde, G. (1988) Loss Compensated Remote Fiber Optic Displacement Sensors for Industrial applications. Proc. EFOC/LAN 88, 246–50.

    Google Scholar 

  20. Martens, G., Kordts, J. and Weidinger, G. (1989) A Photo-elastic Pressure Sensor with Loss-Compensated Fiber Link. Springer Proceedings in Physics, 44, Optical Fiber Sensors, 458–63.

    Google Scholar 

  21. Bing, Q., Wei, P., Shunping, R. and Junxiu, L. (1996) Studies on the long-term stability of fiber optic pressure sensor. Proc SPIE, 2895, Fiber Optic Sensors V, 445–50.

    Google Scholar 

  22. Senior, J. M. and Cusworth, S. D. (1987) Intensity Modulated Optical Fibre Sensors Employing Graded Index Rod Lenses. IOP Short Meetings Series 7, Fibre Optic Sensors, Glasgow, 89–93.

    Google Scholar 

  23. Shaik, M. A. (1989) Design and analysis of fiber optic position sensor. Proc SPIE, 1169, Fiber Optic and Laser Sensors VII, 473–84.

    Google Scholar 

  24. Cockshot, C. P. and Pacaud, S. J. (1989) Compensation of an optical fiber reflective sensor. Sensors and Actuators, 17, 167–71.

    Article  Google Scholar 

  25. Moiseyev, V. V. and Potapov, V. T. (1988) Analysis of the Stability of Reflection-Type Fiber-Optic Sensors. Telecommunications and Radio Engineering Part 2, 43, No 9, 72–5.

    Google Scholar 

  26. Corke, M., Gillham, F., Hu, A., Stowe, D. W. and Sawyer, L. (1988) Fiber Optic Pressure Sensors employing reflective Diaphragm Techniques. Proc SPIE, 985, Fiber Optic and Laser Sensors VI, 164–71.

    Google Scholar 

  27. Berthold, J. W., Ghering, W. L. and Varshineya, D. (1987) Design and Characterization of a High Temperature Fibre-Optic Pressure Transducer. Journal of Lightwave Technology, LT-5, No 7, 870–6.

    Google Scholar 

  28. Spillman, W. B., Fuhr, P. L. and Kajenski, P. J. (1988) Self-referencing Fiber Optic Rotary Displacement Sensor. Proc SPIE, 985, Fiber Optic and Laser Sensors VI, 30510.

    Google Scholar 

  29. Iwamoto, K. and Kamata, I. (1990) Pressure sensor using optical fibers. Appl. Optics, 29 (3), 375–8.

    Article  ADS  Google Scholar 

  30. Ayub, M., Spooncer, R. C. and Jones, B. E. (1988) Environmentally compensated photoelastic pressure sensors with optical fibre links. Proc SPIE, 1011, Fiber Optic Sensors III, 130–5.

    Google Scholar 

  31. Ramakrishnan, L., Unger, L. and Kist, R. (1988) Line loss independent fiberoptic displacement sensor with electrical subcarrier phase encoding. Technical Digest Series, 2, Optical Fiber Sensors, 133–6.

    Google Scholar 

  32. Kalinowski, H. J., Valente, L. C. G. and da Silveira Jr. I. I. (1992) Optical thermometer using a short bend of single-mode fiber. Proc SPIE, 1795, Fiber Optic and Laser Sensors X, 261–5.

    Google Scholar 

  33. Williams, B. A. and Dewhurst, R. J. (1995) Differential fiber-optic sensing of laser generated ultrasound. Electronics Letters, 31 (5), 391–2.

    Article  Google Scholar 

  34. Adamovsky, G. (1986) Time domain referencing in intensity modulation fiber optic sensing systems. Proc SPIE, 661, Optical Testing and Metrology, 145–51.

    Google Scholar 

  35. Lammerink, T. S. J. and Fluitman, J. H. J. (1984) Measuring method for optical fibre sensors. J. Phys. E: Sci. Instrum., 17, 1127–9.

    Article  ADS  Google Scholar 

  36. Spillman, W. B. and Lord, J. R. (1987) Self-Referencing Multiplexing Technique for Fibre Optic Intensity Sensors. Journal of Lightwave Technology, LT-5(7), 865–9.

    Google Scholar 

  37. Bacci, M., Brenci, M., Conforti, G., Falciai, R., Mignani, A. G., Scheggi, A. M. (1986) Thermochromic transducer optical fibre thermometer. Appl. Optics, 25 (7), 1079–82.

    Article  ADS  Google Scholar 

  38. Jones, B. (1986) The pig that looks after railway lines. Sensor Review, 6 (4), 199–201.

    Article  Google Scholar 

  39. Scheggi, A. M., Bacci, M., Brenci, M., Conforti, G., Falciai, R., Mignani, A. G. (1987) Thermometery by optical fibers and a thermochromic transducer. Optical Engineering, 26 (6), 534–7.

    Article  Google Scholar 

  40. Conforti, G., Brenci, M., Mencaglia, A. and Magnani, A. G. (1989) Fiber-optic thermometric probe utilizing GRIN lenses. Appl. Optics, 28 (3), 577–80.

    Article  ADS  Google Scholar 

  41. Liu, X. P., Spooncer, R. C. and Jones, B. E. (1991) An Optical Fibre Displacement Sensor with Extended Range Using Two-wavelength Referencing. Sensors and Actuators, A 25(1–3), 197–200.

    Google Scholar 

  42. Schoener, G., Bechtel, J. H. and Salour, M. M. (1985) Novel fiber coupler for optical fibre temperature sensor. Proc. Optical Fibre Sensors ‘85, 203–6.

    Google Scholar 

  43. Dakin, J. P., Wade, C. A. and Withers, P. B. (1988) An Optical Fibre Sensor for the Measurement of Pressure. Fiber and Integrated Optics, 7, 35–46.

    Article  Google Scholar 

  44. Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1992) Single LED based dual wavelength referenced optical fibre sensor system using intensity modulation. Optics und Laser Technology, 24 (4), 187–92.

    Article  ADS  Google Scholar 

  45. Wang, G. Z., Wang, A., May, R. G., Barnes, A., Murphy, K. A. and Claus, R. O. (1995) Stabilization for intensity-based sensors using two-wavelength ratio technique. Proc SPIE,2594 Self-Calibrated Intelligent Optical Sensors and Systems,41–51.

    Google Scholar 

  46. Murtaza, G. and Senior, J. M. (1995) Dual wavelength referencing of optical fibre sensors. Optics Communications, 120, 348–57.

    Article  ADS  Google Scholar 

  47. Cavaleiro, P. M., Ribeiro, A. B. L. and Santos J. L. (1995) Referencing technique for intensity-based sensors using fibre optic Bragg gratings. Electronics Letters, 31 (5), 3924.

    Article  Google Scholar 

  48. Senior, J. M. and Murtaza, G. (1995) Optical fibre sensor system. European Patent No. EPO470168BI

    Google Scholar 

  49. Thylen, L., Karlsson, G.,and Nilsson, O. (1996) Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics. IEEE Communications Magazine,106–13.

    Google Scholar 

  50. Adams, M. J, Barnsley, P. E., Burton, D. A., Davies, D. A. O., Fiddyment, P. J., Fisher, M. A., Mace, D. A. H., Mudhar, P. S., Robertson, M. J., Singh, J. and Wickes, H. J. (1993) Novel components for optical switching. BT Technical Journal, 11 (2), 89–97.

    Google Scholar 

  51. Murtaza, G. and Senior, J. M. (1994) Wavelength selection strategies to enhance referencing in LED based optical sensors. Optics Communications, 112, 201–13.

    Article  ADS  Google Scholar 

  52. Hill, K. O. and Meltz, G. (1997) Fiber Bragg grating technology fundamentals and overview. Journal ofLightwave Technology, 15 (8), 1263–76.

    Article  ADS  Google Scholar 

  53. Murtaza, G. and Senior, J. M. (1997) Influence of LED thermal drifts on optical cross talk in spectrally sliced WDM systems. Microwave and Optical Technology Letters, 14 (3), 153–5.

    Article  Google Scholar 

  54. Dakin, J. and Culshaw, B. (1989). Optical fibre Sensors: systems and applications. vol. I, Artech House, Inc.

    Google Scholar 

  55. Romaniuk, R. S. and Dorosz, J. (1989) Multicore micro-optics. International J. of Optoelectronics, 4 (3/4), 201–19.

    Google Scholar 

  56. Cozens, J. R., Green, M. and Gu, Y. (1988) Special Fibres for Sensing. Proc SPIE, 1011, Fiber Optic Sensors III, 62–6.

    Google Scholar 

  57. Kociszewski, L., Stepieh, R. and Buzniak, J. (1988) New manufacturing method of sensor oriented optical fibres. Proc SPIE, 1011, Fiber Optic Sensors III, 71–80.

    Google Scholar 

  58. Grosskopf, K. G. (1988) Integrated optics for sensors. Proc SPIE, 1011, Fiber Optic Sensors III, 38–45.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murtaza, G., Senior, J.M. (2000). Referencing Schemes for Intensity Modulated Optical Fiber Sensor Systems. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6079-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6079-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4999-8

  • Online ISBN: 978-1-4757-6079-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics