Distributed Fiber-Optic Sensors: Principles and Applications

  • A. Hartog


Optical fiber sensors have been researched now for a number of years and a wide body of knowledge has been accumulated, as witnessed by the work reported in the other chapters in this book. Although much of the initial development of these sensors was technology-driven, the most successful examples of fiber sensors are those where one or more of the often-cited benefits of fiber sensors bring a fundamental advantage to a particular application. For example, the fiber gyroscope has been able to compete on cost with the laser gyroscope and yet retain some of the advantages of the latter, e.g. zero spool-up time and complete elimination of moving parts. More generally, certain industries have noted the benefits that all-dielectric sensors could bring, in particular the gas and electricity supply industries, where the removal of electrical sensors has significant and specific advantages. In both cases, these are industries where statutory requirements on safety and security of supply have forced a certain degree of caution in the introduction of new technology.


Numerical Aperture Horizontal Well Single Mode Fiber Steam Injection Multimode Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnoski, M. K. and Jensen, S. M. (1976) Appl. Opt., 15(2112–5.Google Scholar
  2. 2.
    Hartog, A. H. and Gold, M. P. (1984)J Lightwave Technol., LT-2(76–82.Google Scholar
  3. 3.
    Neumann, E-G (1980) AEU, 34(157–60.Google Scholar
  4. 4.
    Hartog, A. H. (1983) J Lightwave Technol. LT-1, 498–509.Google Scholar
  5. 5.
    Fames, M. C. et al (1986) Electron. Lett.( 22(418–9.Google Scholar
  6. 6.
    Ferdinand, P. (1990) PhD Thesis,Nice. Google Scholar
  7. 7.
    Ross, J. N. (1981) Electron. Lett, 17(596–7.Google Scholar
  8. 8.
    Mickelson, A. R. et al (1982) Appl. Opt., 21(1898–909.Google Scholar
  9. 9.
    Conduit, A. J. et al (1981) Electron. Lett., 17(308–10.Google Scholar
  10. 10.
    Gold, M. P. et al (1982) Electron. Lett., 18(489–90.Google Scholar
  11. 11.
    Gold, M. P. et al (1984) Electron. Lett.,20, 338–40.Google Scholar
  12. 12.
    Theocharous, E. (1986) IEE Colloquium on distributed optical fibre sensing,London, May 1986 (Digest N° 1986/74)Google Scholar
  13. 13.
    Claus, R. O. et al, (1985) Proc. SPIE, 566(243–8.Google Scholar
  14. 14.
    Bergqvist, E. A. (1991) An optical fiber cable for detecting a change in temperature. European Patent Application 0 490 849A1 26 Nov. 1991.Google Scholar
  15. 15.
    Michie, W. C. et al (1994) Optical Fiber Grout Flow Monitor for Post Tensioned Reinforced Tendon Ducts. Proc 2“” European Conf On Smart Structures and Materials, Glasgow, 1994, 186–9.Google Scholar
  16. 16.
    Gottlieb, M. and Brandt, G. B. (1981) Appl. Opt.( 20(3867–73.Google Scholar
  17. 17.
    Pinchbeck, D. and Kitchen, C. A. (1985) Proc Electron in Oil and Gas,London.Google Scholar
  18. 18.
    Hartog, A. H. et al, (1980) Proc 6th European Conf. Optical Communication((post-deadline session) York, UK.Google Scholar
  19. 19.
    Rogers, A. J. (1980) Electron. Leu., 16(489.Google Scholar
  20. 20.
    Fabelinskii, I. L. (1968) Molecular light scattering.(Plenum Press.Google Scholar
  21. 21.
    Hartog, A. H. et al (1985) Electron. Lett, 21(1061–3.Google Scholar
  22. 22.
    Tanabe, Y. et al (1989) Proc. OFS, Paris, Sept. 1989, 537.Google Scholar
  23. 23.
    York Sensors Ltd, Chandler’s Ford, UK, DTS System-IIGoogle Scholar
  24. 24. Scholar
  25. 25.
    Hartog, A. H. (1995) Distributed fiber-optic temperature sensors: technology and applications in the power industry. Power Engineering, June 1995.Google Scholar
  26. 26.
    Lees, G. P. et al((1998) Recent Advances in Distributed Optical Fiber Temperature Sensing using the Landau-Placzek ratio. SPIE Distributed and Multiplexed Fiber Optic Sensors VII,accepted for Publication, November.Google Scholar
  27. 27.
    Wait, P. C. and Newson, T. P. (1996) Optics Commun., 122(141–6.Google Scholar
  28. 28.
    Wait, P. C. and Newson, T. P. (1996) Optics Commun.( 131(285–9.Google Scholar
  29. 29.
    Souza, K. De et al((1996) Electron. Lett, 32(2174–5.Google Scholar
  30. 30.
    Lees, G. P. et al((1998) Photonics Technol. Lett., 10(126–8.Google Scholar
  31. 31.
    Lees, G. P. et(aí(1996) Electron. Lett., 32(1299–300.Google Scholar
  32. Farries, M. C. and Rogers, A. J. (1984) Proc. 2nd Int. Conf. Opt. Fiber Sensors,Stuttgart, Sept. 1984, 121–32.Google Scholar
  33. 33.
    Valis, T. et al,(1988) Proc. SPIE, 954(83.Google Scholar
  34. 34.
    Dakin, J. P. (1987) Proc. SPIE, 798(149–55.Google Scholar
  35. 35.
    Ahmed, S. U. et al,(1992) Opt Lett., 17(643–5.Google Scholar
  36. 36.
    Shibata, T. Opt. Lett. vol. 12, p 269–271, 1987.ADSCrossRefGoogle Scholar
  37. 37.
    Culverhouse, D. et al,(1989) Electron. Lett., 25(913–4.Google Scholar
  38. 38.
    Horiguchi, T. et al,(1989) IEEE Photon. Technol. Lett, 1(107–8.Google Scholar
  39. 39.
    Tateda, M. et al,(1990) J. Lightwave Technol., 8(1269–72.Google Scholar
  40. 40.
    Trutna, W. R. et al,(1987) Opt Lett, 12(248–50.Google Scholar
  41. 41.
    Dakin, J. P.(Wade, C. A., Henning, M. L. (1984) Electron. Lett.( 20(53–4.Google Scholar
  42. 42.
    Franks, R. B.( et al,(1985) Proc SPIE, 586(84–9.Google Scholar
  43. 43.
    Nakayama, J. et al,(1987) App. Opt, 26(440–3.Google Scholar
  44. 44.
    MacDonald, R. I. (1981)Appl. Opt.( 20, 1840–4.Google Scholar
  45. 45.
    Venkatesh, S. and Dolfi, D. W. (1990) Appl. Opt., 29(1323–6.Google Scholar
  46. Healey, P. (1981) Proc. 7th Eur. Conf on Opt. Commun., 5.2–1–5.2.4.Google Scholar
  47. 47.
    Bernard, J. J. et al, (1984) Symposium on Opt. Fiber Measurements, National Bureau of Standards, Boulder Co, 1984, NBS Publication p683, 95–98.Google Scholar
  48. 48.
    Bernard, J. J and Depresles, E. (1987) Proc SPIE, 838(206–9.Google Scholar
  49. 49.
    Everard, J. K. A. (1989) Electron. Lett., 25(140–2.Google Scholar
  50. 50.
    Nazarathy, M. et al,(1989)/ Lightwave Technol, LT-7(24–38.Google Scholar
  51. 51.
    Healey, P. et al,(1982) Electron. Lett.( 18(862–3.Google Scholar
  52. 52.
    Healey, P. (1984) Electron Lett, 20(30–2.Google Scholar
  53. 53.
    Eickoff, W. and Ulrich, R. (1981) Appl. Phys. Lett., 39(693–5.Google Scholar
  54. 54.
    Uttam, D. et al((1985) J. Lightwave Technol., LT-3(971–6.Google Scholar
  55. 55.
    Sorin, W. V. and Donald, D. K. (1990) Symposium on Optical Fiber Measurements, Boulder, Co 1990, NBS Publication 792, 27–30.Google Scholar
  56. 56.
    Stierlin, R. et al,(1987) Appl. Opt., 26(1368–70.Google Scholar
  57. 57.
    Stein, J. (1989) EPRI survey, Electrical Power Research Institute, Palo-Alto. Ca, June 1989.Google Scholar
  58. 58.
    Marcus, M. et al((1989) SPIE Boston, Sept. 6–8, 1989.Google Scholar
  59. Nishimura, K. et al((1995) Development of seafloor thermometry system using optical fiber distributed temperature sensor for study of mid-ocean ridges. Proc. Ocean ‘85 MTS/IEEE,October 1995.Google Scholar
  60. 60.
    Nishimura, K. and Matsubayashi, O. (1996) Application of an Optical Fiber Distributed Temperature Sensor to Marine and Lake Surveys. J of the Japan Soc. For Marine Surveys and Technol., 8, 17–31, March 1996.Google Scholar
  61. 61.
    Norman, S. R. et al, (1992) IEE Colloquium on Fiber optics Sensor Technology, London, May 29, 1992.Google Scholar
  62. 62.
    Oscroft, G. J (1987) Optical Fiber Sensors, 2(269–79.Google Scholar
  63. 63.
    Moore, S. R. and Weinberg, F.J. (1983) Proc R. Soc.,London A.385(373.Google Scholar
  64. 64.
    Tortoiseshell, G. (1985) Fiber Optics ‘85,London 1985, SPIE Proc. 522. Google Scholar
  65. Tortoishell, G. (1990) The safety of Optical Systems in Hazardous Areas. SPIE Proc.( 1266. Google Scholar
  66. 66.
    Hills, P. C. et al((1991) Proc. 7th Int. Conf Optical Fiber Sensors,Sydney, Australia.Google Scholar
  67. 67.
    European Commission: Report EUR 16011 EN, Optical techniques in industrial measurement: safety in hazardous environments Google Scholar
  68. 68.
    Petersen, R. C. and Sliney, D.(H. (1986) Appl. Opt., 25(1038–47.Google Scholar
  69. 69.
    Rogers, A. J. (2000) Nonlinear optics and optical fibers. Optical Fiber Sensor Technology 5, Eds Grattan, K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, 187–238.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. Hartog

There are no affiliations available

Personalised recommendations