Skip to main content

Nonlinear Optics and Optical Fibers

  • Chapter
Optical Fiber Sensor Technology
  • 754 Accesses

Abstract

In the various discussions concerning the propagation of light in material media such as silica optical fibers, in the previous chapters we have been dealing with linear processes. By this we mean that a light beam of a certain optical frequency which enters a given medium will leave the medium with the same frequency, although the amplitude and phase of the wave will, in general, be altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nye, J. F. (1976) Physical Properties of Crystals, Clarendon Press, Oxford, Chap. 13.

    Google Scholar 

  2. Fujii, Y., Kawasaki, B. S., Hill, K. O. and Johnson, D. C. (1980) Sum-frequency light generation in optical fibres, Opt. Lett., 5, 48.

    Article  ADS  Google Scholar 

  3. Cotter, D. (1982) Suppression of stimulated Brillouin scattering during transmission of high power narrowband laser light in monomode fibre. Electron. Lett., 18, 638.

    Article  Google Scholar 

  4. Hill, K. O., Fujii, Y., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity in optical-fibre waveguides, Appl. Phys. Lett., 32, 647.

    Article  ADS  Google Scholar 

  5. Osterberg, U., Margulis, W. (1986) Dye laser pumped by Nd-YAG laser pulses frequency doubled in a glass optical fibre, Opt. Lett., 11, 516.

    Article  ADS  Google Scholar 

  6. Stolen, R. H. and Lin, C. (1978) Self-phase modulation in optical fibres, Phys. Rev. A, 17, 1448–52.

    Article  ADS  Google Scholar 

  7. Lin, C. et al (1981) Phase matching in the minimum chromatic dispersion region of SM Fibres for stimulated FPM, Opt. Lett., 6, 493.

    Article  ADS  Google Scholar 

  8. Bar-Joseph, I. et al (1986) Parametric interaction of a modulated wave in an SM fibre, Opt. Lett., 11, 534.

    Article  ADS  Google Scholar 

  9. Cohen, L. G. and Lin, C. (1978) A universal fibre-optic measurement system based on a Near IR fibre Raman laser’, IEEE J. Quant. Elect., QE-14, 855.

    Google Scholar 

  10. Lin, C. and French, W. G. (1979) A near IR fibre Raman oscillator, Appl. Phys. Lett., 34, 10.

    Google Scholar 

  11. Mollenauer, L. F., Stolen, R. H. and Gordon, J. P. (1980) Experimental observation of picosecond narrowing and solitons in optical fibres, Phys. Rev. Lett., 45, 1095.

    Article  ADS  Google Scholar 

  12. Kawasaki, B. S., Hill, K.O., Johnson, D. C. and Fujii, Y. (1978) Narrow-band Bragg reflectors in optical fibres, Opt. Lett., 3, 66.

    Article  ADS  Google Scholar 

  13. Bures, J., Lapierre, J. and Pascale, D. (1980) Photosensitivity in optical fibres: a model for growth of an interference filter’, Appl. Phys. Lett., 37, 860.

    Article  ADS  Google Scholar 

  14. Ayral, J. L., Pocholle, J. P., Raffy, J. and Papuchon, M. (1984) Optical Kerr coefficient measurement at 1.15µm in SM optical fibres. Optics Commun., 49, 405.

    Article  ADS  Google Scholar 

  15. Dziedzic, J. M., Stolen, R. H. and Ashkin, A. (1981) Optical Kerr effect in long fibres. Appl. Optics., 20, 1403.

    Article  ADS  Google Scholar 

  16. Kitayama, K., Kimura, Y., Okamato, K. and Seikoi, S. (1985) Optical sampling using an all-fibre optical shutter. Appl. Phys. Lett., 46, 623.

    Article  ADS  Google Scholar 

  17. Dakin, J. P. (1987) Distributed fibre temperature sensor using the optical Kerr effect. Proc. SPIE,798, Fibre Optic Sensors 11,149–156.

    Google Scholar 

  18. Bergh, R. A., Lefevre, H. C. and Shaw, A. J. (1982) Compensation of the optical Kerr effect in fibre-optic gyroscopes. Optics Lett., 7, 282.

    Article  ADS  Google Scholar 

  19. Dakin, J. P., Pratt, D. J., Bibby, G. W. and Ross, J. N. (1985) Distributed anti-Stokes Raman thermometry, in Proceedings 3rd International Conference on Optical Fibre Sensors, San Diego, February, postdeadline paper.

    Google Scholar 

  20. Hartog, A. (2000) Distributed fiber optic sensors: principles and applications in Optical Fiber Sensor Technology 5, Eds Grattan, K. T. V. and Meggitt, B. T., 239–300.

    Google Scholar 

  21. Fames, M. C. and Rogers, A. J. (1984) Distributed sensing using stimulated Raman interaction in an optical fibre, in Proceedings 2nd International Conference on Optical-Fibre Sensors, Stuttgart, paper 4. 5, pp. 121–32.

    Google Scholar 

  22. Othonos, A. (2000) Bragg gratings in optical fibers: fundamentals and applications in Optical Fiber Sensor Technology 5, Eds Grattan, K. T. V. and Meggitt, B. T., 79–186.

    Google Scholar 

  23. Agrawal, G. P. (1989) Nonlinear Fiber Optics,Academic Press.

    Google Scholar 

  24. Boyd, R. W. (1992) Nonlinear Optics,Academic Press.

    Google Scholar 

  25. Guenther, R. D. (1990) Modern Optics, John Wiley and Sons, Chap. 15

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, A.J. (2000). Nonlinear Optics and Optical Fibers. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6079-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6079-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4999-8

  • Online ISBN: 978-1-4757-6079-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics