Nonlinear Optics and Optical Fibers

  • A. J. Rogers


In the various discussions concerning the propagation of light in material media such as silica optical fibers, in the previous chapters we have been dealing with linear processes. By this we mean that a light beam of a certain optical frequency which enters a given medium will leave the medium with the same frequency, although the amplitude and phase of the wave will, in general, be altered.


Nonlinear Optic Second Harmonic Generation Harmonic Generation Phase Match Group Velocity Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nye, J. F. (1976) Physical Properties of Crystals, Clarendon Press, Oxford, Chap. 13.Google Scholar
  2. 2.
    Fujii, Y., Kawasaki, B. S., Hill, K. O. and Johnson, D. C. (1980) Sum-frequency light generation in optical fibres, Opt. Lett., 5, 48.ADSCrossRefGoogle Scholar
  3. 3.
    Cotter, D. (1982) Suppression of stimulated Brillouin scattering during transmission of high power narrowband laser light in monomode fibre. Electron. Lett., 18, 638.CrossRefGoogle Scholar
  4. 4.
    Hill, K. O., Fujii, Y., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity in optical-fibre waveguides, Appl. Phys. Lett., 32, 647.ADSCrossRefGoogle Scholar
  5. 5.
    Osterberg, U., Margulis, W. (1986) Dye laser pumped by Nd-YAG laser pulses frequency doubled in a glass optical fibre, Opt. Lett., 11, 516.ADSCrossRefGoogle Scholar
  6. 6.
    Stolen, R. H. and Lin, C. (1978) Self-phase modulation in optical fibres, Phys. Rev. A, 17, 1448–52.ADSCrossRefGoogle Scholar
  7. 7.
    Lin, C. et al (1981) Phase matching in the minimum chromatic dispersion region of SM Fibres for stimulated FPM, Opt. Lett., 6, 493.ADSCrossRefGoogle Scholar
  8. 8.
    Bar-Joseph, I. et al (1986) Parametric interaction of a modulated wave in an SM fibre, Opt. Lett., 11, 534.ADSCrossRefGoogle Scholar
  9. 9.
    Cohen, L. G. and Lin, C. (1978) A universal fibre-optic measurement system based on a Near IR fibre Raman laser’, IEEE J. Quant. Elect., QE-14, 855.Google Scholar
  10. 10.
    Lin, C. and French, W. G. (1979) A near IR fibre Raman oscillator, Appl. Phys. Lett., 34, 10.Google Scholar
  11. 11.
    Mollenauer, L. F., Stolen, R. H. and Gordon, J. P. (1980) Experimental observation of picosecond narrowing and solitons in optical fibres, Phys. Rev. Lett., 45, 1095.ADSCrossRefGoogle Scholar
  12. 12.
    Kawasaki, B. S., Hill, K.O., Johnson, D. C. and Fujii, Y. (1978) Narrow-band Bragg reflectors in optical fibres, Opt. Lett., 3, 66.ADSCrossRefGoogle Scholar
  13. 13.
    Bures, J., Lapierre, J. and Pascale, D. (1980) Photosensitivity in optical fibres: a model for growth of an interference filter’, Appl. Phys. Lett., 37, 860.ADSCrossRefGoogle Scholar
  14. 14.
    Ayral, J. L., Pocholle, J. P., Raffy, J. and Papuchon, M. (1984) Optical Kerr coefficient measurement at 1.15µm in SM optical fibres. Optics Commun., 49, 405.ADSCrossRefGoogle Scholar
  15. 15.
    Dziedzic, J. M., Stolen, R. H. and Ashkin, A. (1981) Optical Kerr effect in long fibres. Appl. Optics., 20, 1403.ADSCrossRefGoogle Scholar
  16. 16.
    Kitayama, K., Kimura, Y., Okamato, K. and Seikoi, S. (1985) Optical sampling using an all-fibre optical shutter. Appl. Phys. Lett., 46, 623.ADSCrossRefGoogle Scholar
  17. 17.
    Dakin, J. P. (1987) Distributed fibre temperature sensor using the optical Kerr effect. Proc. SPIE,798, Fibre Optic Sensors 11,149–156.Google Scholar
  18. 18.
    Bergh, R. A., Lefevre, H. C. and Shaw, A. J. (1982) Compensation of the optical Kerr effect in fibre-optic gyroscopes. Optics Lett., 7, 282.ADSCrossRefGoogle Scholar
  19. 19.
    Dakin, J. P., Pratt, D. J., Bibby, G. W. and Ross, J. N. (1985) Distributed anti-Stokes Raman thermometry, in Proceedings 3rd International Conference on Optical Fibre Sensors, San Diego, February, postdeadline paper.Google Scholar
  20. 20.
    Hartog, A. (2000) Distributed fiber optic sensors: principles and applications in Optical Fiber Sensor Technology 5, Eds Grattan, K. T. V. and Meggitt, B. T., 239–300.Google Scholar
  21. 21.
    Fames, M. C. and Rogers, A. J. (1984) Distributed sensing using stimulated Raman interaction in an optical fibre, in Proceedings 2nd International Conference on Optical-Fibre Sensors, Stuttgart, paper 4. 5, pp. 121–32.Google Scholar
  22. 22.
    Othonos, A. (2000) Bragg gratings in optical fibers: fundamentals and applications in Optical Fiber Sensor Technology 5, Eds Grattan, K. T. V. and Meggitt, B. T., 79–186.Google Scholar
  23. 23.
    Agrawal, G. P. (1989) Nonlinear Fiber Optics,Academic Press.Google Scholar
  24. 24.
    Boyd, R. W. (1992) Nonlinear Optics,Academic Press.Google Scholar
  25. 25.
    Guenther, R. D. (1990) Modern Optics, John Wiley and Sons, Chap. 15Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. J. Rogers

There are no affiliations available

Personalised recommendations