Intrinsic position sensing using optical fiber and coherence domain polarimetry

  • S. Chen
  • B. T. Meggitt
Chapter
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)

Abstract

Detection of the physical position of an object is one of the most important sensing applications in industry and engineering. Not only is the gauging of physical dimensions with such position sensor systems important in its own right, but the monitoring of many operational and control parameters in engineering applications can also be converted into position sensing by use of various transducer systems.

Keywords

Coherence Length Optical Path Difference Resolution Enhancement Birefringent Fiber Central Fringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chen, B. T. Meggitt and A. J. Rogers, Electronically scanned white-light interferometry with enhanced dynamic range, Electron. Lett., 26(24), 1663–1665, 1990.Google Scholar
  2. 2.
    S. Chen, I. P. Giles and M. Fahadiroushan, A quasi-distributed pressure sensor using intensity type optical coherence domain polarimetry, Opt. Leu., 16 (5), 342–344, 1991.CrossRefGoogle Scholar
  3. 3.
    S. Chen, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan and R. A. Pinnock, An intrinsic optical-fiber position sensor with schemes for temperature compensation and resolution enhancement, J. Lightwave Technol., 15 (2), 1997.Google Scholar
  4. 4.
    S. Chen, K. T. V. Grattan, A. W. Palmer and B. T. Meggitt, Fringe-order identification in optical fiber white-light interferometry using a centroid algorithm method, Electron Lett., 28 (6), 553, 1992.CrossRefGoogle Scholar
  5. 5.
    Y. Ning, K. T. V. Grattan, B. T. Meggitt and A. W. Palmer, Characteristics of laser diodes for interferometric use, Appl. Opt., 28 (17), 3657–3661, 1989.CrossRefGoogle Scholar
  6. 6.
    S. Chen, A. W. Palmer, B. T. Meggitt and K. T. V. Grattan, Instantaneous direct identification of central fringe using dual sources with widely spaced wavelengths, Electron. Lett., 29 (4), 334–335, 1993.CrossRefGoogle Scholar
  7. 7.
    S. Chen, A. W. Palmer, K. T. V. Grattan and B. T. Meggitt, Digital signal processing techniques for electronically scanned optical-fiber white-light interferometry, Appl. Opt., 31 (28), 6003–6010, 1992.CrossRefGoogle Scholar
  8. 8.
    V. Gusmeroli and M. Martinelli, High-resolution distance measurement by dynamic spectral filtering of a superluminescent source, Opt. Lett., 16 (15), 1195–1197, 1991.CrossRefGoogle Scholar
  9. 9.
    W. Eickhoff, Temperature sensing by mode—mode interference in birefringence optical fibers, Opt. Lett., 6 (4), 204–206, 1981.CrossRefGoogle Scholar
  10. 10.
    S. Chen and I. P. Giles, Optical coherence domain polarimetry: Intensity and interferometric type for quasi-distributed optical fibre sensors, SPIE Proceedings,1370 (for OE/Fiber’90 in San Jose, CA).Google Scholar
  11. 11.
    I. P. Giles, P. Lloyd, C. Doran and M. Mondanos, Optical fibre based damage detection for aerospace structures, IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring, London, 1997.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • S. Chen
  • B. T. Meggitt

There are no affiliations available

Personalised recommendations