Skip to main content

Optical current sensor technology

  • Chapter
Book cover Optical Fiber Sensor Technology

Part of the book series: Optoelectronics, Imaging and Sensing Series ((OISS,volume 3))

Abstract

The principles of optical and optical fiber current sensor technology have been known for some considerable time, and some of the earliest papers on optical fibre measurement techniques have considered this topic. The general advantages of the use of optical technology were discussed by Rogers [1] in an earlier volume, in which the essential principles of the methods available and a description of some of the essential technologies were described. This builds upon that introduction, and discusses in some detail the optical current sensor devices and technology advances which have been developed in recent years. Optical current sensors (OCSs) show several important features when compared with conventional current transformers (CTs), such as their having highly effective isolation from high line potentials offered by the dielectric nature of the optical fibers, freedom from the saturation effect which may be observed in conventional transformers, the potential to make measurements in high voltage and/or high magnetic induction noise fields, a high linear response over a wide frequency bandwidth, a remote, high-speed measurement capability for monitoring or metering purposes, and the fact that they are compact and light-weight measuring devices, available at potentially low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rogers, A. J. (1995) Optical fiber current measurement, Optical Fiber Sensor Technology (Eds K. T. V. Grattan and B. T. Meggitt). Chapman and Hall, London, pp. 421–439.

    Google Scholar 

  2. Day, G. W. (1989) Recent advances in Faraday effect sensors, Springer Proceedings in Physics, 44, Optical Fiber Sensors. Springer, Berlin, p. 250.

    Google Scholar 

  3. Rogers, A. J. (1973) Optical technique for measurement of current at high voltage, Proc. IEE, 120 (3), 261–267.

    Google Scholar 

  4. Bush, S. P. and Jackson D. A. (1992) Numerical investigation of the effects of birefringence and total internal reflection on Faraday effect current sensors, Appl. Opt., 31 (25), 5366.

    Article  Google Scholar 

  5. Ning, Y. N., Wang, Z. P., Palmer, A. W., Grattan, K. T. V. and Jackson, D. A. (1995) Recent progress in optical current sensing techniques, Rev. Sci. Instrum., 66, 3097 3111.

    Google Scholar 

  6. Born, M. and Wolf, E. (1986) Principles of Optics, 6th edn., Pergamon Press, Oxford.

    Google Scholar 

  7. Rogers, A. J. (1977) Optical methods for measurement of voltage and current on power systems, Opt. Lasers Technol., 273.

    Google Scholar 

  8. Donati, S., Annovzzi-Lodi, V. and Tambosso, T. (1988) Magneto-optical optical current sensors for electrical industry: analysis of performances, IEE Proc., J, 135 (5), 372.

    Google Scholar 

  9. Sato, T., Takahashi, G. and Inui, Y. (1983) Method and apparatus for optically measuring a current, Europe Patent, Publication No. 0088419 Al.

    Google Scholar 

  10. Ning, Y. N., Chu, B. C. B. and Jackson, D. A. (1991) Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring, Opt. Lett, 16, 1996.

    Google Scholar 

  11. Chu, B. C. B., Ning, Y. N. and Jackson, D. A. (1992) Faraday current sensor that uses a triangular-shaped bulk-optic sensing element, Opt. Lett., 17, 1167.

    Article  Google Scholar 

  12. Ulmer, E. A. Jr. (1988) High accuracy Faraday rotation measurement, OSA/IEEE 1988 Technical Digest of Optical Fiber Sensors Topical Meeting, 27–29 January, New Orleans, LA, p. 288.

    Google Scholar 

  13. Ulmer, E. A. Jr. (1990) A high-accuracy optical current transducer for electric power systems, IEEE Trans. Power Delivers, 5 (2), 892.

    Article  MathSciNet  Google Scholar 

  14. Kersey, A. D. and Jackson, D. A. (1986) Current sensing utilizing heterodyne detection of Faraday effect in single-mode optical fiber, IEEE J. Lightwave Technol., 4 (6), 2084.

    Article  Google Scholar 

  15. Kersey, A. D. and Davis, M. A. (1989) All-fiber Faraday-rotation current sensor with remote laser-FM based heterodyne detection, Springer Proceedings in Physics, 44, Optical Fiber Sensors, Springer, Berlin, p. 285.

    Google Scholar 

  16. Leilabady, P. A., Wayte, A. P., Berwick, M., Jones, J. D. C. and Jackson, D. A. (1986) A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications, Opt. Commun., 59 (3), 173.

    Article  Google Scholar 

  17. Jackson, D. A., Kersey, A. D., Corke, M. and Jones, J. D. C. (1982) Pseudo-heterodyne detection scheme for optical interferometers, Electron. Lett., 18, 1081.

    Article  Google Scholar 

  18. Ulrich, R. and Simon, A. (1979) Polarisation optics of twisted single-mode fibers, Appl. Opt., 18 (13), 2241.

    Article  Google Scholar 

  19. Laming, R. I. and Payne, D. N. (1989) Electric current sensors employing spun highly birefringent optical fibers, IEEE J. Lightwave Technol., 7 (12), 2084.

    Article  Google Scholar 

  20. Day, G. W. and Etzel, S. M. (1985) Annealing of bend-induced birefringence in fiber current sensors, Tech. Digest Int. Conf. Int.grated Optics and Optical Fiber Communication. European Conf. Optical Communication, Venice, p. 871.

    Google Scholar 

  21. Tang, D. and Day, G. W. (1988) Progress in the development of miniature optical fiber current sensors, IEEE Lasers and Electro-Optics Society LEOS’88 Annual Meeting, Conference Proc., pp. 306.

    Google Scholar 

  22. Tang, D., Rose, A. H. and Day, G. W. (1990) Practical considerations in the design of optical fiber current sensors SPIE, 1267, Fiber Optic Sensors IV, p. 29.

    Google Scholar 

  23. Ren, Z. B. and Robert, Ph. (1989) Input polarization coding in fiber current sensors, Springer Proceedings in Physics, 44, Optical Fiber Sensors, Springer, Berlin, p. 261

    Google Scholar 

  24. Ben-Kish, A., Tur, M. and Shafir, E. (1991) Geometrical separation between the birefringence components in Faraday-rotation fiber-optic current sensors, Opt. Lett., 16 (9), 687.

    Article  Google Scholar 

  25. Ahlers, H. and Bosselmann, Th. (1990) Complete polarization analysis of a magneto-optic current transformer with a new polarimeter, Conf. Proc. 7th Optical Fiber Sensors Conference, p. 81.

    Google Scholar 

  26. Chu, W., McStay, D. and Rogers, A. J. (1991) Current sensing by mode coupling in fiber via the Faraday effect, Electron. Lett., 27 (3), 207.

    Article  Google Scholar 

  27. Laming, R. I. and Payne, D. N. (1989) Electric current sensors employing spun high birefringence optical fibers, IEEE J. Lightwave Technol., 7 (12), 2084.

    Article  Google Scholar 

  28. Pistoni, N. C. and Marttinelli, M. (1993) Vibration-insensitive fiber-optic current sensor, Opt. Lett., 18 (4), 314.

    Article  Google Scholar 

  29. Kurosawa, K. (1996) Optical current transformers using flint glass fiber as a Faraday sensor element. Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 134–139.

    Google Scholar 

  30. Kurosawa, K., Yoshida, S. and Sakamoto, K. (1994) Polarization maintaining properties of the flint fiber for the Faraday sensor element, Conf. Proc. 10th Optical Fiber Sensors Conference, Glasgow, SPIE, 2360, 28–31.

    Google Scholar 

  31. Yoshida, S., Kurosawa, K. and Sano, O. (1996) Development of an optical current transformer using a flint glass fiber for a gas circuit break, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 172–175.

    Google Scholar 

  32. Rogers, A. J., Xu, J. and Yao, J. (1994) Vibration immunity for optical-fiber current measurement, Conf. Proc. 10th Optical Fiber Sensors Conference, Glasgow, SPIE, 2360, 40–44.

    Google Scholar 

  33. Kung, A., Nicati, P. A. and Robert, P. A. (1996) Brillouin fiber optic current sensor, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 156–159.

    Google Scholar 

  34. Kanoi, M., Takahashi, G., Sato, T., Higaki, M., Mori, E. and Okmura, K. (1986) Optical voltage and current measuring system for electric power systems, IEEE Trans. Power Delivery, 1, 91.

    Article  Google Scholar 

  35. Caese, T. W. and Johnston, P. (1990) A magneto-optic current transducer, IEEE Trans. Power Delivery, 5, 548.

    Article  Google Scholar 

  36. Cease, T. W., Driggans, J. G. and Weikel, S. J. (1991) Optical voltage and current sensors used in a revenue metering system, IEEE Trans. Power Delivery, 6, 1374.

    Article  Google Scholar 

  37. Chu, B. C. B., Ning, Y. N. and Jackson, D. A. (1992) Polarization analysis of bulk optic Faraday current sensor with a triangular configuration, San Diego ‘82–37th Annual International Symposium on Optical and Optoelectronic Applied Science and Engineering, SPIE, 1746, 21–23.

    Google Scholar 

  38. Ning, Y. N. and Jackson, D. A. (1993) Faraday effect optical current sensor using a bulk glass sensing element, Opt. Leu., 18 (10), 835.

    Article  Google Scholar 

  39. Ning, Y. N., Wang, Z. P., Grattan, K. T. V. and Palmer, A. W. (1995) Faraday current sensor using a novel multioptical-loop sensing element, Meas. Sci. Technol., 6 (9), 1339–1342.

    Article  Google Scholar 

  40. Zhang, W., Ning, Y. N., Chu, B. C. B., Grattan, K. T. V. and Palmer, A. W. (1996) Vibration-induced noise in a fiber lead of an optical current measurement system, Rev. Sci. Instrum., 67 (2), 553–557.

    Article  Google Scholar 

  41. Ning, Y. N., Liu, Y., Grattan, K. T. V., Palmer, A. W. and Weir, K. (1994) The relation between the coherence length and modal noise in a graded index multimode fiber for white light interferometric systems, Opt. Leu., 19 (6), 372–374.

    Google Scholar 

  42. Hercher, M. (1991) Ultra-high resolution interferometric sensors, Optical Photonics News, 11, 24.

    Article  Google Scholar 

  43. Ning, Y. N., Chu, B. C. B. and Jackson, D. A. (1991) Interrogation of a conventional current transformer via a fiber optic interferometer, Opt. Leu., 16 (18), 1448.

    Article  Google Scholar 

  44. Ning, Y. N., Liu, T. Y. and Jackson, D. A. (1992) Two low-cost robust electro-optic hybrid current sensors capable of operation at extremely high potential, Rev. Sci. Instrum., 63 (12), 5771.

    Article  Google Scholar 

  45. Jackson, D. A., Ning, Y. N., McGarrity, C. and Santos, J. L. (1992) Three phase current measurement using a hybrid current sensing technique, Conf. Proc. 8th Optical Fiber Sensors Conference, Monterey, CA, p. 426.

    Google Scholar 

  46. Kirkham, H. and Johnston, A. R. (1989) Optically powered data link for power system applications, IEEE Trans. Power Delivery, 4 (4), 1997.

    Article  Google Scholar 

  47. Adolfson, M., Einnvall, C. H., Lindberg, P., Samuelson, J., Ahlgren, L. and Ediund, H. (1989) EHV series capacitor banks. A new approach to platform to ground signalling, relay protection and supervision, IEEE Trans. Power Delivery, 4 (2), 1369.

    Article  Google Scholar 

  48. Tonnesen, O., Beatty, N. and Skilbreid, 0. (1989) Electrooptic methods for measurement of small DC currents at high voltage level, IEEE Trans Power Delivery, 4 (3), 1568.

    Google Scholar 

  49. Pilling, N. A., Holmes, R. and Jones, G. R. (1993) Optical fiber current measurement system using liquid crystals and chromatic modulation, IEE Proc., C, 140 (5), 351.

    Google Scholar 

  50. Bucholtz, F., Koo, K. P., Kersey, A. D. and Dandridge, A. D. (1986) Fiber optic magnetic sensor development, Fiber Optic and Laser Sensors IV, SPIE, 718, 56, 1986.

    Google Scholar 

  51. Bucholtz, F., Dagenais, D. M., Koo, K. P. and Vohra, S. (1990) Recent developments in fiber optic magnetostrictive sensors, Fiber Optic and Laser Sensors VIII, SPIE, 1367, 226.

    Google Scholar 

  52. Bucholtz, F., Dagenais, D. M. and Koo, K. P. (1989) High-frequency fiber-optic magnetometer with 70fT/v/Hz resolution, Electron. Lett., 25 (25), 1719.

    Google Scholar 

  53. Bucholtz, F., Koo, K. P., Sigel, G. H. Jr. and Dandridge, A. D. (1985) Optimization of the fiber/metallic glass bond in fiber-optic magnetic sensors, IEEE J. Lightwave Technol., 3 (4), 814.

    Article  Google Scholar 

  54. Koo, K. P., Bucholtz, F., Dagenais, D. M. and Dandridge, A. D. (1989) A compact fiber-optic magnetometer employing an amorphous metal wire transducer, IEEE Photonics Technol. Lett., 1 (12).

    Google Scholar 

  55. Jarzynski, J., Cole, J. H., Bucaro, J. A. and Davis, C. M. Jr. (1980) Magnetic field sensitivity of an optical fiber with magnetostrictive jacket, Appl. Opt., 19 (22), 3746.

    Article  Google Scholar 

  56. Bibby, G. W., Larnson, D. C., Tyagi, Y. and Bobb, L. C. (1992) Fiber optic magnetic field sensors using metallic-glass-coated optical fibers, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 161.

    Google Scholar 

  57. Borrelli, N. F. (1964) Faraday rotation in glasses, •. Chem. rhys., 41(11), 3289.

    Google Scholar 

  58. Bartlett, S. C., Farahi, F. and Jackson, D. A. (1990) A common path optical fiber heterodyne interferometric current sensor, Conf Proc. 7th Opticay 1 7 tber Sensors Conference, p. 85.

    Google Scholar 

  59. Svantesson, K., Sohlstrom, H. and Holm, U. (1990) Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing, Eie-’r-?-?ptic and Magneto-Optic Materials II, SPIE, 1274, 260.

    Google Scholar 

  60. Imaeda, M. and Kozuka, Y. (1992) Optical magnetic field sensors using iron garnet crystals, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 386.

    Google Scholar 

  61. Wolfe, R. and Lieberman, R. A. (1991) Fiber optic magnetic field sensor based on domain wall motion in garnet film waveguides, Appl. Phys. retc., 58 (1.6), 1733.

    Google Scholar 

  62. Wolfe, R., Gyorgy, E. M., Lieberman, R. A., Fratello. V. J., Licr-a, S. J., Deeter, M. N. and Day, G. W. (1992) High frequency magnetic field sensors based on the Faraday effect in garnet thick films, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 390.

    Google Scholar 

  63. Minier, V., Persegol, D., Lovato, J. L. and Kevorkian, A. (1996) Integrated optical current sensor for a high-power system, Conf Proc. I I th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 164–167.

    Google Scholar 

  64. Minier, V., Danel, A., Persegol, D. and Kevorkian, A. (1995) Fr,-,s. ‘CIO’95,pp. 379, Delft, The Netherlands.

    Google Scholar 

  65. Day, G. W., Rochford, K. B. and Rose, A. H. (1996) Fundamentals and problems of fibre current sensors, Conf. Proc. Ilth Optical Fiber Sensors Conference, Sapporo, Japan, pp. 124–129.

    Google Scholar 

  66. Sato, T., Sone, I., Hayashida, H. and Nakagama. Y. (1996) Development and applications of bulk-optic current sensors, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 130–133.

    Google Scholar 

  67. Kanoi, M. et al.(1986) Optical voltage and current measuring system for electric power system, IEEE Power Delivery, PWRD-1(1), 91–97.

    Google Scholar 

  68. Kobayashi, S. et al.(1991) Development of optical current transformers with the portions of free gas space propagation of light, T. IEE apa;n, ill-B(9), 999–1006.

    Google Scholar 

  69. Fujimoto, T. et al.(1994) Commercial operation of o f.tical,:u.re_.t transformers for overcurrent detection, Power and Energy Division Conventon Records of IEE Japan, No. 641, pp. 862–863.

    Google Scholar 

  70. Ishizuka, S., Itoh, N. and Minemoto, H. (1996) Optical fibre current sensors using garnet crystal for power distribution fields. Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 140–141.

    Google Scholar 

  71. Katsukawa, H. and Yokoi, S. (1996) Optical current transducer with a bulk type BSO Faraday sensor for power systems, Conf Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 142–143.

    Google Scholar 

  72. Sone, I. (1996) Ring glass type Faraday effect current sensor, Conf. Froc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 144–145.

    Google Scholar 

  73. Takagi, H. et al.(1994) Future-oriented substation using computer technologies, International Conference on Large High Voltage Electric System (C1GRE), 23/13–04.

    Google Scholar 

  74. Kuwabara, T. et al.Design and dynamic response characteristics of 400 MW adjustable speed pumped storage unit for Ohkawachi power station, IEEE PES 1995 Summer Meeting, No. 95SM615–5EC.

    Google Scholar 

  75. Willsch, M. and Bosselmann, T. (1996) Vibration compensation for a glass ring type magneto optic current sensor, Conf. Proc. 11 th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 148–151.

    Google Scholar 

  76. Niewisch, J., Menke, P., Krammer, P. and Bosselmann, T. (1996) Temperature drift compensation of a potential transformer using a BSO Pockels cell, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 152–155.

    Google Scholar 

  77. Kurosawa, K., Yoshida, S. and Sakamoto, K. (1994) A method for improvement of immunity from environment in Faraday effect current using the flint glass fiber, Conf. Proc. 10th Optical Fiber Sensors Conference, SPIE, 2360, 430–433.

    Google Scholar 

  78. Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, The Fiber Optic Sensors Working Group, Fiber Optics Subcommittee, Power Systems Communications Committee, Optical current transducers for power systems: a review, IEEE Trans. Power Delivery, 9 (4), 1778–1788, 1994.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grattan, K.T.V., Ning, Y.N. (1999). Optical current sensor technology. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6077-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6077-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4736-9

  • Online ISBN: 978-1-4757-6077-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics