Advertisement

The application of optical fiber sensors in advanced fiber reinforced composites. Part 2: Cure monitoring

  • P. A. Crosby
  • G. F. Fernando
Chapter
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)

Abstract

Optical-fiber-based cure monitoring in composites or resin systems used in the production of composites can be classified into qualitative or quantitative techniques. In the qualitative approach, correlation is sought between a specified property of the resin as a function of processing time and conditions. For example, the change in the refractive index of the resin system as a function of cure.

Keywords

Optical Fiber Evanescent Wave Optical Fiber Sensor Resin System Cure Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. R. Ciriscioli and G. S. Springer, Smart autoclave cure of composites. Technimic Publishing, Pennsylvania, ISBN: 87762–802–5 (1990).Google Scholar
  2. 2.
    G. S. Springer, Microwave cure of polymeric matrix composites. Proc. ACS Division of Polymeric Materials Science and Engineering, 66, 420–421 (1992).Google Scholar
  3. 3.
    C. J. de Baker, P. M. Fredericks and G. A. George, Fibre optic FT—Raman spectroscopy for the thermal and microwave cure of advanced composite resins. Preliminary studies. 14th Int. Conf. Raman Spectroscopy, 524, 702–703 (1994).Google Scholar
  4. 4.
    A. S. Castro, R. Y. Kim and B. P. Rice, Electron beam cure of composites for aerospace structures. 42 (1), 487–497 (1997).Google Scholar
  5. 5.
    Y. Tanaka, Synthesis and characterization of epoxides. Epoxy Resins, Chemistry and Technology, Editor C. A. May, 2nd edn. Marcel Dekker, New York, pp. 9–284 (1988).Google Scholar
  6. 6.
    C. A. May, Introduction to epoxy resins. Epoxy Resins, Chemistry and Technology, Editor C. A. May, 2nd edn. Marcel Dekker, New York, pp. 1–8 (1988).Google Scholar
  7. 7.
    D. C. L. Greenfield, The cure characteristics and physical properties of glycidyl ether epoxy resins. PhD. Thesis, Brunel University (1986).Google Scholar
  8. 8.
    L. Shechter and J. Wynstra, Glycidyl ether reactions with amines. Industrial and Engineering Chemistry, 48, 94–97 (1956).Google Scholar
  9. 9.
    B. A. Rozenberg, Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines. Advances in Polymer Science, 75, 113–165 (1985).Google Scholar
  10. 10.
    N. A. St John and G. A. George, Diglycidyl amine-epoxy resin networks: kinetics and mechanisms of cure. Progress in Polymer Science, 19, 755–795 (1994).Google Scholar
  11. 11.
    K. Dusek, M. Bleha and S. Lunak, Curing of epoxide resins: model reactions of curing with amines. Journal of Polymer Science: Polymer Chemistry Edition, 15, 2393–2400 (1977).Google Scholar
  12. 12.
    L. G. Weyer, Near-infrared spectroscopy of organic substances. Applied Spectroscopy Reviews, 21 (12), 1–43 (1985).MathSciNetGoogle Scholar
  13. 13.
    E. Stark, K. Luchter and M. Margoshes, Near-infrared analysis (NIRA): a technology for quantitative and qualitative analysis. Applied Spectroscopy Reviews, 22 (4), 335–399 (1986).Google Scholar
  14. 14.
    K. B. Whetsel, Near-infrared spectrophotometry. Applied Spectroscopy Reviews, 2 (1), 1–67 (1968).Google Scholar
  15. 15.
    R. F. Goddu, Near-infrared spectrophotometry. Advances in Analytical Chemistry and Instrumentation, 1, 347–425 (1960).Google Scholar
  16. 16.
    C. E. Miller, Near-infrared spectroscopy of synthetic polymers. Applied Spectroscopy, 26 (4), 277–339 (1991).Google Scholar
  17. 17.
    H. E. Howell and J. R. Davis, Qualitative identification of polymeric materials using near-infrared spectroscopy. Advances in Chemistry Series, 263, 263–285 (1993).Google Scholar
  18. 18.
    G. Lachenal, Dispersive and Fourier transform near-infrared spectroscopy of polymeric materials. Vibrational Spectroscopy, 9, 93–100 (1995).Google Scholar
  19. 19.
    B. Chabert, G. Lachenal and C. Vinh Tung, Epoxy resins and epoxy blends studied by near infrared spectroscopy. Macromolecular Symposia, 94, 145–158 (1995).Google Scholar
  20. 20.
    R. F. Goddu and D. A. Delker, Determination of terminal epoxides by near-infrared spectrophotometry. Analytical Chemistry, 30 (12), 2013–2016 (1958).Google Scholar
  21. 21.
    O. H. Wheeler, Near infrared spectra–a neglected field of spectral study. Journal of Chemical Education, 37 (5), 234–236 (1960).Google Scholar
  22. 22.
    R. F. Goddu and D. A. Delker, Spectra-structure correlations for the near-infrared region. Analytical Chemistry, 32 (1), 140–141 (1960).Google Scholar
  23. 23.
    F. H. Lohman and W. E. Norteman Jr., Determination of primary and secondary aliphatic amines by near-infrared spectrophotometry. Analytical Chemistry, 35 (6), 707–711 (1963).Google Scholar
  24. 24.
    K. Whetsel, W. E. Roberson and M. W. Krell, Near-infrared analysis of mixtures of primary and secondary aromatic amines. Analytical Chemistry, 30 (10), 1594–1597 (1958).Google Scholar
  25. 25.
    K. B. Whetsel, W. E. Roberson and M. W. Krell, Near-infrared spectra of primary aromatic amines. Analytical Chemistry, 30 (10), 1598–1604 (1958).Google Scholar
  26. 26.
    H. Dannenberg, Determination of functional groups in epoxy resins by near-infrared spectroscopy. SPE Transactions, January, 78–88 (1963).Google Scholar
  27. 27.
    C. Tosi and A. Pinto, Near-infrared spectroscopy of hydrocarbon functional groups. Spectrochimica Acta, 28A, 585–597 (1972).Google Scholar
  28. 28.
    J. H. Fu and J. R. Schlup, Mid-and near-infrared spectroscopic investigations of reactions between phenyl glycidyl ether (PGE) and aromatic amines. Journal of Applied Polymer Science, 49, 219–227 (1993).Google Scholar
  29. 29.
    L. Xu, J. H. Fu and J. R. Schlup, In-situ near-infrared spectroscopic investigation of epoxy resin aromatic amine cure mechanisms. Journal of the American Chemical Society, 116, 2821–2826 (1994).Google Scholar
  30. 30.
    J. Mijovic and S. Andjelic, A study of reaction kinetics by near-infrared spectroscopy. 1. Comprehensive analysis of a model epoxy/amine system. Macromolecules, 28, 2787–2796 (1995).Google Scholar
  31. 31.
    J. Mijovic, S. Andjelic and C. F. Winnie Yee, A study of reaction kinetics by near-infrared spectroscopy. 2. Comparison with dielectric spectroscopy of model and multifunctional epoxy/amine systems. Macromolecules, 28, 2797–2806 (1995).Google Scholar
  32. 32.
    B. G. Min, Z. H. Stachurski, J. H. Hodgkin and G. R. Heath, Quantitative analysis of the cure reaction of DGEBA/DDS epoxy-resins without and with thermoplastic polysulfone modifier using near-infrared spectroscopy. Polymer, 34 (17), 3620–3627 (1993).Google Scholar
  33. 33.
    V. Strehmel and T. Scherzer, Structural investigation of epoxy amine networks by mid-and near-infrared spectroscopy. European Polymer Journal, 30 (3), 361–368 (1994).Google Scholar
  34. 34.
    K. E. Chike, M. L. Myrick, R. E. Lyon and S. M. Angel, Raman and near-infrared studies of an epoxy resin. Applied Spectroscopy, 47 (10), 1631–1635 (1993).Google Scholar
  35. 35.
    D. W. Schiering, J. E. Katon, L. T. Drzal and V. B. Gupta, An infrared spectroscopic investigation of the curing of the EPON 828/meta-phenylenediamine system. Journal of Applied Polymer Science, 34, 2367–2375 (1987).Google Scholar
  36. 36.
    K. A. Kozielski, G. A. George, N. A. St John and N. C. Billingham, Kinetic studies by FT-NIR of the curing reactions of two glycidyl ether epoxy resins mixed with stoichiometric quantities of 4,4’-DDS. High Performance Polymers, 6, 263–286 (1994).Google Scholar
  37. 37.
    N. Poisson, G. Lachenal and H. Sautereau, Near-and mid-infrared spectroscopy studies of an epoxy reactive system. Vibrational Spectroscopy, 12, 237–247 (1996).Google Scholar
  38. 38.
    G. A. George, P. Cole-Clarke, N. St John and G. Friend, Real-time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fibre optic FTIR. Journal of Applied Polymer Science, 42, 643–657 (1991).Google Scholar
  39. 39.
    N. A. St John and G. A. George, Cure kinetics and mechanisms of a tetraglycidyl4,4’-diaminodiphenylmethane/diamindiophenylsulphone epoxy resin using near i.r. spectroscopy. Polymer, 33 (13), 2679–2687 (1992).Google Scholar
  40. 40.
    C. J. DeBakker, G. A. George, N. A. St John and P. M. Fredericks, The kinetics of the cure of an advanced epoxy resin by Fourier transform Raman and near-IR spectroscopy. Spectrochimica Aeta, 49A (5), 739–752 (1993).Google Scholar
  41. 41.
    C. J. DeBakker, N. A. St John and G. A. George. Simultaneous differential scanning calorimetry and near-infrared analysis of the curing of tetraglycidyldiaminodiphenylmethane with diaminodiphenylsulphone. Polymer, 34 (4), 716–725 (1993).Google Scholar
  42. 42.
    T. Scherzer, Characterization of diol-modified epoxy resins by near-and mid-infrared spectroscopy. Journal of Applied Polymer Science, 51, 491–502 (1994).Google Scholar
  43. 43.
    M. C. Paputa Peck, R. O. Carter III and S. B. A. Qaderi, Near-infrared measurements of terminal epoxides in polymer resin systems. Part 1. Analytical considerations. Journal of Applied Polymer Science, 33, 77–86 (1987).Google Scholar
  44. 44.
    R. J. Varley, G. R. Heath, D. G. Hawthorne and J. H. Hodgkin, Toughening of a trifunctional epoxy system. 1. Ncar infrared spectroscopy study of homopolymer cure. Polymer, 36 (7), 1347–1355 (1995).Google Scholar
  45. 45.
    M. E. Ryan and A. Dutta, Polymer, 20, 203–206 (1979).Google Scholar
  46. 46.
    L. Xu, J. H. Fu and J. R. Schlup, In-situ near-infrared spectroscopic investigation of the kinetics and mechanisms of reactions between phenyl glycidyl ether (PGE) and multifunctional aromatic amines. Industrial and Engineering Chemistry Research, 35, 963–972 (1996).Google Scholar
  47. 47.
    G. Lachenal, A. Pierre and N. Poisson, FT-NIR spectroscopy: trends and application to the kinetic study of epoxy/triamine system (comparison with DSC and SEC results). Micron, 27 (5), 329–334 (1996).Google Scholar
  48. 48.
    N. Poisson. G. Lachenal and H. Sautereau, Near-and mid-infrared spectroscopy studies of an epoxy reactive system. Vibrational Spectroscopy, 12, 237–247 (1996).Google Scholar
  49. 49.
    L. Xu and J. R. Schlup, Application of near-infrared attenuated total reflectance spectroscopy for monitoring epoxy resin/amine cure reactions. Applied Spectroscopy, 50 (1), 109–114 (1996).Google Scholar
  50. 50.
    H. Dannenberg, Refractive index method for determining cure rates of epoxy resins. SPE Journal, October, 875–880 (1959).Google Scholar
  51. 51.
    N. A. Vaz and G. P. Montgomery Jr., Refractive indices of polymer-dispersed liquid film materials: Epoxy-based systems. Journal of Applied Physics, 62 (8), 3161–3172 (1987).Google Scholar
  52. 52.
    Y. B. Fridman and A. F. Shchurov, On relations between the refractive indices of epoxy polymer networks and their chemical structure. Polymer Science USSR, 25, 1702–1707 (1983).Google Scholar
  53. 53.
    ASTM Standards on Plastics, Standard Test Methods for Index of Refraction of Transparent Organic Plastics. D542–50. Philadelphia (1960).Google Scholar
  54. 54.
    D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers - Their Estimation and Correlation with Chemical Structure, 2nd edn. Elsevier Scientific, Amsterdam (1976).Google Scholar
  55. 55.
    P. R. Cooper, Refractive-index measurements of paraffin, a silicone elastomer, and an epoxy resin over the 500–1500-nm spectral range. Applied Optics, 21 (19), 3413–3415 (1982).Google Scholar
  56. 56.
    V. Galiatsatos, R. O. Neaffer, S. Sen and B. J. Sherman, Refractive index, stress-optical coefficient and optical configuration parameter of polymers. Physical Properties of Polymers, Editor James E. Mark. American Institute of Physics Press, New York (1996).Google Scholar
  57. 57.
    R. E. Pepper and R. J. Samuels, Refractometry. Encyclopedia of Polymer Science and Engineering, 14, 261–298 (1992).Google Scholar
  58. 58.
    R. E. Lyon, K. E. Chike and S. M. Angel, In situ cure monitoring of epoxy resins using fiber-optic Raman spectroscopy. Journal of Applied Polymer Science, 53, 1805–1812 (1994).Google Scholar
  59. 59.
    H.-J. Paik and N.-H. Sung, Fiberoptic intrinsic fluorescence for in-situ cure monitoring of amine-cured epoxy and composites. Polymer Engineering and Science, 34 (12), 1025–1032 (1994).Google Scholar
  60. 60.
    K. Y. Lam and M. A. Afromowitz, Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure. Applied Optics, 34 (25), 5635–5638 (1995).Google Scholar
  61. 61.
    M. M. Ohn, A. Davis, K. Liu and R. M. Measures, Embedded fiber optic detection of ultrasound and its application to cure monitoring. SPIE Fiber Optic Smart Structures and Skins V, 1798, 134–143 (1992).Google Scholar
  62. 62.
    A. E. Grey and J. K. Partin, Fiber optic chemical sensors–an overview. Leak Detection for Underground Storage Tanks. ASTM STP 1161, Editors: P. B. Durgin and T. M. Young. American Society for Testing and Materials, Philadelphia, pp. 105–114 (1993).Google Scholar
  63. 63.
    S. S. J. Roberts and R. Davidson, Cure and fabrication monitoring of composite materials with fibre-optic sensors. Composites Science and Technology, 49, 265–276 (1993).Google Scholar
  64. 64.
    J. Mijovic, S. Andjelic and J. M. Kenny, In situ real-time monitoring of epoxy-amine kinetics by remote near infrared spectroscopy. Polymers for Advanced Technologies, 7, 1–16 (1996).Google Scholar
  65. 65.
    P. A. Crosby, G. R. Powell, T. Liu, X. Wu and G. F. Fernando, In-situ cure monitoring of an epoxy/amine resin system using an optical-fiber transmission sensor. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2895, 109–115 (1996).Google Scholar
  66. 66.
    J. M. Fildes, S. M. Milkovich, R. Altkorn, R. Haidle and J. Neatrour, In situ infrared spectroscopy and neural network analysis for composite cure monitoring. 25th International SAMPE Technical Conference, October (1993).Google Scholar
  67. 67.
    P. Calvert, G. George and L. Rintoul, Monitoring of cure and water uptake in a freeformed epoxy resin by an embedded optical fiber. Chemistry in Materials, 8, 1298–1301 (1996).Google Scholar
  68. 68.
    S. Cossins, M. Connell, B. Cross, R. Winter and J. Kellar, In-situ near-IR cure monitoring of a model epoxy matrix composite. Applied Spectroscopy, 50 (7), 900–905 (1996).Google Scholar
  69. 69.
    G. R. Powell, P. A. Crosby, G. F. Fernando, C. M. France, R. C. Spooncer and D. N. Waters, Optical-fiber evanescent-wave cure monitoring of epoxy-resins. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2718, 80–92 (1996).Google Scholar
  70. 70.
    P. A. Crosby, G. R. Powell, G. F. Fernando, C. M. France, R. C. Spooncer and D. N. Waters, In-situ monitoring of epoxy-resins using optical-fiber sensors. Smart Materials and Structures, 5 (4), 415–428 (1996).Google Scholar
  71. 71.
    J. Mijovic and S. Andjelic, Study of the mechanism and rate of bismaleimide cure by remote in-situ real time fiber optic near-infrared spectroscopy. Macromolecules, 29, 239–246 (1996).Google Scholar
  72. 72.
    S. L. Cossins, M. E. Connell, W. M. Cross, R. M. Winter and J. J. Kellar, Evanescent wave spectroscopy for in-situ cure monitoring. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2836, 147–156 (1996).Google Scholar
  73. 73.
    E. E. Tapanes, J. R. Goode, P. L. Rossiter and A. J. Hill, Evanescent wave spectroscopy as an interface probe. Materials Science Forum, 189, 190, 205–210 (1995).Google Scholar
  74. 74.
    M. A. Druy and L. Elandjian, Composite cure monitoring with infrared transmitting optical fibers. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 986, 130–134 (1988).Google Scholar
  75. 75.
    M. A. Druy, P. J. Glatkowski and W. A. Stevenson, Embedded optical fiber sensors for monitoring cure cycles of composites. ADPA/AIAA/ASME/SPIE Conference on Materials and Adaptive Structures, 42, 805–808 (1992).Google Scholar
  76. 76.
    M. A. Druy, P. J. Glatkowski and W. A. Stevenson, Applications of remote fiber optic spectroscopy using IR fibers and Fourier transform infrared (FTIR) spectrometers. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1591, 218–224 (1991).Google Scholar
  77. 77.
    D. Bunimovich, R. Kellner, R. Krska, A. Mesica, I. Paiss, U. Schiesl, M. Tacke, K. Taga and A. Katzir, A system for monitoring and control of processes based on IR fibres and tunable diode lasers. Journal of Molecular Structure, 292, 125–132 (1993).Google Scholar
  78. 78.
    D. A. C. Compton, S. L. Hill, N. A. Wright, M. A. Druy, J. Piche, W. A. Stevenson and D. W. Vidrine, In-situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Applied Spectroscopy, 42 (6), 972–979 (1988).Google Scholar
  79. 79.
    Z. Ge, C. W. Brown and M. Brown, Monitoring of lamination processes in an autoclave with fiber-optic infrared spectroscopy. Journal of Applied Polymer Science, 56, 667–675 (1995).Google Scholar
  80. 80.
    R. D. Driver, J. N. Downing and G. M. Leskowitz, Evanescent-wave spectroscopy down infrared transmitting optical fibers. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1591, 168–179 (1991).Google Scholar
  81. 81.
    J. Mijovic and S. Andjelic, Monitoring of reactive processing by remote mid-infrared spectroscopy. Polymer, 37 (8), 1295–1303 (1996).Google Scholar
  82. 82.
    S. M. Milkovich, R. I. Altkorn, R. H. Haidle, M. J. Neatrour and J. M. Fildes, In situ sensors for intelligent process control for fabrication of polymer-matrix composite materials. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2191, 349–360 (1994).Google Scholar
  83. 83.
    C. M. Stellman, J. F. Aust and M. L. Myrick, In situ spectroscopic study of microwave polymerization. Applied Spectroscopy, 49(3), 392–394 (1995).Google Scholar
  84. 84.
    K. C. Hong, T. M. Vess, R. E. Lyon, K. E. Chike, J. F. Aust and M. L. Myrick, Remote cure monitoring of polymeric resins by laser Raman spectroscopy. 38th International SAMPE Symposium, pp. 427–435 (1993).Google Scholar
  85. 85.
    J. F. Aust, K. S. Booksh, C. M. Stellman, R. S. Parnas and M. L. Myrick, Precise determination of percent cure of epoxide polymers and composites via fiber-optic Raman spectroscopy and multivariate analysis. Applied Spectroscopy, 51 (2), 247–252 (1997).Google Scholar
  86. 86.
    J. F. Aust, K. S. Booksh and M. L. Myrick, Novel in situ probe for monitoring polymer curing. Applied Spectroscopy, 50 (3), 382–387 (1996).Google Scholar
  87. 87.
    T. F. Cooney, H. T. Skinner and S. M. Angel, Comparative study of some fiber-optic remote Raman probe designs. Part 1. Model for liquids and transparent solids. Applied Spectroscopy, 50 (7), 836–848 (1996).Google Scholar
  88. 88.
    T. F. Cooney, H. T. Skinner and S. M. Angel, Comparative study of some fiber-optic remote Raman probe designs. Part 2. Tests of single-fiber, lensed, and flat-and bevel-tip multi-fiber probes. Applied Spectroscopy, 50 (7), 849–860 (1996).Google Scholar
  89. 89.
    J. F. Maguire and P. L. Talley, Remote Raman spectroscopy as a sensor technology in composite materials processing. Journal of Advanced Materials, January, 27–40 (1995).Google Scholar
  90. 90.
    I. R. Lewis and P. R. Griffiths, Raman spcctrometry with fiber-optic sampling. Applied Spectroscopy, 50 (10), 12A - 30A (1996).Google Scholar
  91. 91.
    W. Dang and N.-H. Sung, In-situ cure monitoring of diamine cured epoxy by fiber-optic fluorimetry using extrinsic reactive fluorophore. Polymer Engineering and Science, 34 (9), 707–715 (1994).Google Scholar
  92. 92.
    D. L. Woerdeman, K. M. Flynn, J. P. Dunkers and R. S. Parnas, The use of evanescent wave fluorescence spectroscopy for control of the liquid molding process. Journal of reinforced plastics and composites, 15, 922–943 (1996).Google Scholar
  93. 93.
    A. Fuchs and N.-H. Sung, Composite interphase study by evanescent fiberoptic fluorescence. Antec 95, 2437–2441 (1995).Google Scholar
  94. 94.
    A. Fuchs and N. Sung, Epoxy/fiber interphase probing via evanescent fluorimetry using sapphire optical fiber, Polymeric Materials Science and Engineering, 71, 439440 (1994).Google Scholar
  95. 95.
    D. L. Woerdeman and R. S. Parnas, Cure monitoring in RTM using fluorescence. Plastic’s Engineering, October, 25–27 (1995).Google Scholar
  96. 96.
    B. P. Rice, Monitoring of’ composite resin cure with a tool-mounted UV-vis-NIR fiber optic sensor. 38th International SAMPE Symposium, May (1993).Google Scholar
  97. 97.
    B. P. Rice, Composite cure monitoring with a tool-mounted UV-vis-NIR fiber optic sensor. 39th International SAMPE Symposium, April, 893–904 (1994).Google Scholar
  98. 98.
    M. A. Afromowitz, Fiber optic polymer cure sensor. Journal of Lightmave Technology, 6 (10), 1591–1594 (1988).Google Scholar
  99. 99.
    M. A. Afromowitz and K. Y. Lam, The optical properties of curing epoxies and applications to the fiber optic cure sensor. Sensors and Actuators, A23, 1107–1110 (1990).Google Scholar
  100. 100.
    K. Y. Lam and M. A. Afromowitz, Fiber-optic epoxy composite cure sensor. 2. Performance characteristics. Applied Optics, 34 (25), 5639–5644 (1995).Google Scholar
  101. 101.
    B. Zimmermann, C. DiFrancia, K. Murphy, A. Vengsarkar and R. Claus, Optical fiber methods for autoclave and epoxy cure monitoring. Review of Progress in Quantitative Nondestructive Evaluation, 9, 2047–2053 (1990).Google Scholar
  102. 102.
    B. Zimmermann, M. de Vries and R. Claus, Resin sensors for composite cure monitoring. ADPA/AIAA/ASME/SPIS Conference on Active Materials and Structures, 18, 313–316 (1992).Google Scholar
  103. 103.
    K. A. Lou, B. Zimmermann and G. Yaniv, Combined sensor system for process and in-service health monitoring of composite structures. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2191, 32–45 (1994).Google Scholar
  104. 104.
    R. G. May, J. M. Sanderson and R. O. Claus, Combined fiber optic strain sensor and composite cure monitor for smart structure applications. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2191, 46–57 (1994).Google Scholar
  105. 105.
    C. Ganesh, J. P. H. Steele, H. Zhang, D. Mishra and J. Jones, Predicting degree-ofcure of epoxy resins with fiber optic sensors and artificial neural networks. 39th International SAMPE Symposium, April, 883–892 (1994).Google Scholar
  106. 106.
    Y. M. Liu, C. Ganesh, J. P. H. Steele and J. E. Jones, Fiber optic sensor development for real-time in-situ epoxy cure monitoring. Journal of Composite Materials, 31 (1), 87–102 (1997).Google Scholar
  107. 107.
    G. Fawcett, W. Johnstone and W. L. K. Yim, Design and experimental optimization of an evanescent-field fibre-optic refractometer. Conference on Lasers and Electrooptics (Amsterdam, 1994), pp. 372–373 (1994).Google Scholar
  108. 108.
    W. C. Michie, G. Thursby, W. Johnstone and B. Culshaw, Optical techniques for determination of the state of cure of epoxy resin based systems. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1798, 11–18 (1992).Google Scholar
  109. 109.
    L. Levesque, B. E. Paton and S. H. Payne, Precise thickness and refractive index determination of polyimide films using attenuated total reflection. Applied Optics, 33 (34), 8036–8040 (1994).Google Scholar
  110. 110.
    L. C. Gunderson, Fiber optic sensor applications using Fabry-Perot interferometry. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1267, 194–204 (1990).Google Scholar
  111. 111.
    D. A. Klosterman and T. E. Saliba, Development of an in situ fiber optic sensor for on-line void detection and control. 38th International SAMPE Symposium, May, 1322–1332 (1993).Google Scholar
  112. 112.
    G. R. Powell, P. A. Crosby, G. F. Fernando, C. M. France, R. C. Spooncer and D. N. Waters, In-situ cure monitoring of advanced fibre reinforced composites. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2444, 386–396 (1995).Google Scholar
  113. 113.
    P. A. Crosby, G. R. Powell, G. F. Fernando, D. N. Waters, C. M. France and R. C. Spooncer, A comparative study of optical fibre cure monitoring methods. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 3042, 141–153 (1997).Google Scholar
  114. 114.
    L. Fei, M. Aidong and L. Jianyi, Optical fiber sensing method for the in-situ cure monitoring of composite materials. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2839, 413–419 (1996).Google Scholar
  115. 115.
    R. G. May and R. O. Claus, In-situ fiber optic sensor for composite cure monitoring through characterization of resin viscoelasticity. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2948, 24–34 (1996).Google Scholar
  116. 116.
    J. R. Dunphy, G. Meltz, F. P. Lamm and W. W. Morey, Multi-function, distributed optical fiber sensor for composite cure and response monitoring. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1370, 116–118 (1990).Google Scholar
  117. 117.
    J. Dorighi, S. Krishnaswamy and J. D. Achenbach, A fiber optic ultrasound sensor for monitoring the cure of epoxy. Review of Progress in Quantitative Nondestructive Evaluation, 15, 657–664 (1996).Google Scholar
  118. 118.
    A. Davis, M. M. Ohn, K. Liu and R. M. Measures, Composite cure monitoring with embedded optical fiber sensors. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1489, 33–43 (1991).Google Scholar
  119. 119.
    A. Davis, M. M. Ohn, K. Liu and R. M. Measures, A study of an opto-ultrasonic technique for cure monitoring. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 1588, 264–274 (1991).Google Scholar
  120. 120.
    D. Kranbuehl, D. Hood, Y. Wang, G. Boiteux, F. Stephan, C. Mathieu, G. Seytre, A. Loos and D. McRae, In situ monitoring of polymer processing properties. Polymers for Advanced Technologies, 8, 93–99 (1997).Google Scholar
  121. 121.
    D. Krambuehl, D. Hood, A. Kriss and R. Barksdale, In-situ FDEMS sensing and modeling of the epoxy infiltration, viscosity and degree of cure during resin transfer molding of a textile preform. Polymeric Materials Science and Engineering, 74, 28–29 (1996).Google Scholar
  122. 122.
    D. E. Kranbuehl, P. Kingsley and S. Hart, In situ sensor monitoring and intelligent control of the resin transfer molding process. Polymer Composites, 15(4), 299–305 (1994).Google Scholar
  123. 123.
    J. H. Choi and D. G. Lee, Expert cure system for the carbon fiber epoxy composite materials. Journal of Composite Materials, 29 (9), 1181–1200 (1995).MathSciNetGoogle Scholar
  124. 124.
    F. Stephan, A. Fit and X. Duteurtre, In-process control of epoxy composite by microdielectrometric analysis. Polymer Engineering and Science, 37 (2), 436–449 (1997).Google Scholar
  125. 125.
    J. P. H. Steele, C. Ganesh, K. Liu, H. Zhang, D. Mishra and J. Jones, Predicting degree of cure of epoxy resins using dielectric sensor data and artificial neural networks. 38th International SAMPE Symposium, May, 1333–1345 (1993).Google Scholar
  126. 126.
    B. P. Rice and C. W. Lee, Novel, low-cost sensors for intelligent process control. 41st International SAMPE Symposium, March, 1518–1529 (1996).Google Scholar
  127. 127.
    J. S. Kim and D. G. Lee, Measurement of the degree of cure of carbon fiber epoxy composite materials. Journal of Composite Materials, 30 (13), 1436–1457 (1996).Google Scholar
  128. 128.
    J.-S. Kim and D. G. Lee, On-line cure monitoring and viscosity measurement of carbon fiber epoxy composite materials. Journal of Materials Processing Technology, 37, 405–416 (1993).Google Scholar
  129. 129.
    G. M. Maistros and I. K. Partridge, Dielectric monitoring of cure in a commercial carbon-fibre composite. Composites Science and Technology, 53, 355–359 (1995).Google Scholar
  130. 130.
    C. Mathieu, G. Boiteux, G. Seytre, R. Villain and P. Dublineau, Microdielectric analysis of the polymerization of an epoxy-amine system. Journal of Non-Crystalline Solids, 172, 174, 1012–1016 (1994).Google Scholar
  131. 131.
    C. W. Lee, B. Rice and M. Buczek, Direct current resistance based resin state sensors. 41st International SAMPE Symposium, March, 1511–1517 (1996).Google Scholar
  132. 132.
    P. J. Biermann, J. H. Cranmer, C. A. Lebowitz and L. M. Brown, End-of-cure sensing using ultrasonics for autoclave fabrication of composites. Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2948, 72–83 (1996).Google Scholar
  133. 133.
    T. E. Saliba, D. Hofmann and P. Smolinski, Development of an in situ Hall-effect sensor for on-line monitoring of thickness and compaction during composite curing. Composites Science and Technology, 51, 1–9 (1994).Google Scholar
  134. 134.
    Y. Bar-Cohen, A. Chatterjee and M. West, Sensors for cure monitoring of composite materials. Review of Progress in Quantitative Nondestructive Evaluation, 12, 1039–1046 (1993).Google Scholar
  135. 135.
    M. J. Perry, L. J. Lee and C. W. Lee, On-line cure monitoring of epoxy/graphite composites using a scaling analysis and a dual heat flux sensor. Journal of Composite Materials, 26 (2), 274–292 (1992).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • P. A. Crosby
  • G. F. Fernando

There are no affiliations available

Personalised recommendations