The application of optical fiber sensors in advanced fiber reinforced composites. Part 1: Introduction and issues

  • G. F. Fernando
  • P. A. Crosby
  • T. Liu
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)


Advanced fiber reinforced composites (AFRCs) are a class of materials which are made up of a reinforcing phase and a matrix phase. The reinforcing phase can be short fibers or continuous fibers. Typical examples of fibers which are used include carbon, glass, silicon carbide and polyaramid. The matrix phase can be a thermoplastic, thermoset, ceramic or metal. A summary of selected properties for engineering materials is presented in Table 2.1. With reference to Table 2.1, it is readily apparent that the specific properties (property of interest divided by the density) of AFRCs are superior to those of other engineering materials. This makes AFRCs ideal materials for primary and secondary load-bearing applications where weight is at a premium. Hence there is extensive utilization for aerospace and other transport-based applications. The drive to reduce the overall weight of AFRCs has resulted in the development of hollow glass and carbon fibers.


Fiber Bragg Grating Optical Fiber Sensor Resin System Interfacial Bond Strength Embed Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engineering Materials Handbook. Vol. 1. Composites (1987) ASM International.Google Scholar
  2. 2.
    Klocek, P., Roth, M. and Rock, R. D. (1987) Chalcogenide glass optical fibres and image bundles: property and applications. Optical Engineering, 26 (2), 88–95.CrossRefGoogle Scholar
  3. 3.
    Martin, A. (1998) Ph.D. Thesis, Brunel University.Google Scholar
  4. 4.
    UK Composites Association and Hunting Engineering (1997).Google Scholar
  5. 5.
    Ciba Geigy Trade Literature (1981) Fibredux 914.Google Scholar
  6. 6.
    Brooks, D. (1997) Department of Materials Engineering, Brunel University, unpublished results.Google Scholar
  7. 7.
    Badcock, R. A. and Fernando, G. F. (1995) An intensity-based optical fibre sensor for fatigue damage detection in advanced fibre-reinforced composites. Smart Materials and Structures, 4, 223–230.CrossRefGoogle Scholar
  8. 8.
    Martin, D. A. (1987) Optical fibre coating evaluation for composite embedment applications. Materials Research Society Symposia Proceedings, Pittsburgh, PA, 88, 19–26.Google Scholar
  9. 9.
    DiFrancia, C., Claus, R., Hellgeth, J. W. and Ward, T. C. (1989) Structure/property correlation of several polyimide optical fibre coatings for embedding in an epoxy matrix. SPIE, 1170, 505–512.Google Scholar
  10. 10.
    DiFrancia, C., Ward, T. C. and Claus, R. O. (1996) The single fibre pull-out test. 2. Quantitative evaluation of an uncatalysed TGDDM/DDS epoxy cure study. Composites Part A, 27A, 613–624.CrossRefGoogle Scholar
  11. 11.
    Oxford Electronics Ltd. (1997) Trade literature.Google Scholar
  12. 12.
    Sirkis, J. S. and Lu, I. P. (1993) On interphase modelling for optical fibre sensors embedded in unidirectional composite systems. ASME, Aerospace Division, Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, 35, 419–426.Google Scholar
  13. 13.
    Sirkis, J. S. and Lu, I. P. (1995) On interphase modeling of optical fibre sensors embedded in unidirectional composite systems. Journal of Intelligent Material Systems and Structures, 6, 199–209.CrossRefGoogle Scholar
  14. 14.
    Sirkis, J. S. and Grande, R. (1995) Nonlinear analysis of composite strength loss due to embedded ductile metal coated optical fibre sensors. Proceedings of SPIE, 2442, 152–159.CrossRefGoogle Scholar
  15. 15.
    Dasgupta, A. and Sirkis, J. S. (1992) Importance of coatings to optical fibre sensors. AIAA Journal, 30 (5), 88–99.CrossRefGoogle Scholar
  16. 16.
    King, W. W. and Aloisio, C. J., Jr (1997) Thermomechanical mechanism for delamination of polymer coating from optical fibers. Journal of Electronic Packaging, Transactions of the ASME,119 (2), 133–136.Google Scholar
  17. 17.
    Matthewson, M. J., Kurkian, C. R. and Hamblin, J R (1997) Acid stripping of fused silica optical fibres without strength degradation. Journal of Lightwave Technology,15 (3), 490–497.Google Scholar
  18. 18.
    Matejec, V., Hayer, M., Pavlovic, P., Kuncova, M., Kuncova, G. and Guglielmi, M. (1995) Effect of preparation of sol-gel coatings on the strength of optical fibres. Journal of Sol-Gel Science and Technology, 5 (3), 193–199.CrossRefGoogle Scholar
  19. 19.
    Schultheisz, C. R., Schutte, C. L., McDonough, W. G., Macturk, K. S. and McAuliffe, M. (1996) Effect of temperature and fibre coating on the strength of E-glass fibres and the E-glass/epoxy interface for single-fibre fragmentation samples immersed in water. ASTM Special Technical Publication, No. 1290, pp. 103–131, ASTM, Conshohocken, PA.Google Scholar
  20. 20.
    Doremus, R. H. (1995) Diffusion of water in silica glass, Journal of Materials Research, 10 (9), 2379–2389.CrossRefGoogle Scholar
  21. 21.
    Thomas, J. L. (1995) Interface region in glass fibre-reinforced epoxy resin composites. 2. Water absorption, voids and the interface. Composites, 26 (7), 477–485.CrossRefGoogle Scholar
  22. 22.
    Evans, T. (1997) High temperature optical fibre sensors. Final Year Project Dissertation, Department of Materials Engineering, Brunel University.Google Scholar
  23. 23.
    Levin, K. and Nilsson, S. (1996) Examination of reliability of fibre optic sensors embedded in carbon/epoxy composites. Proceedings SPIE–International Society for Optical Engineering, 2779 pp. 222–229.CrossRefGoogle Scholar
  24. 24.
    Martin, A., Fernando, G. F. and Hale, K. (1997) Impact damage detection in filament wound tubes using embedded optical fibre sensors. Smart Materials and Structures, 6, 470–476.CrossRefGoogle Scholar
  25. 25.
    Melle, S. M., Liu, K. and Measures, R. M. (1993) Practical fibre-optic grating strain gauge system. Applied Optics, 32 (19), 3601–3609.CrossRefGoogle Scholar
  26. 26.
    Fernando, G. F., Liu, T., Crosby, P. A., Doyle, C., Martin, A., Brooks, D., Ralph, B. and Badcock, R. A. (1997) A multi-purpose optical fibre sensor design for fibre reinforced composite materials. Journal of Measurement Science and Technology, 8, 1065–1079.CrossRefGoogle Scholar
  27. 27.
    Jensen, D. W., August, J. A. and Pascual, J. (1991) Compressive strength and stiffness reductions in graphite/bismaleimide laminates with embedded fibre-optic sensors. ADPA/AIAA/SPIE Conference on Active Materials and Adaptive Structures, November, Alexandria, VA. Editor G. J. Knowles, IOP, Bristol, pp. 129–134.Google Scholar
  28. 28.
    Mall, S., Dosedel, S. B. and Ho11, M. W. (1996) Performance of graphite—epoxy composites with embedded optical fibres under compression. Smart Materials and Structures, 5 (2), 209–215.CrossRefGoogle Scholar
  29. 29.
    Badcock, R. A. (1998) Ph.D. Thesis, Brunel University.Google Scholar
  30. 30.
    Nightingale, C. (1996) Final Year Project, Materials Engineering, Brunel University.Google Scholar
  31. 31.
    DiFrancia, C., Ward, T. C. and Claus, R. O. (1996) Single-fibre pull-out test. 1. Review and interpretation. Composites. Part A. Applied Science and Manufacturing, 27 (8), 597–612.CrossRefGoogle Scholar
  32. 32.
    Badcock, R. A. (1997) DERA Farnborough, SMART Structures Department, Guildford, Private communication.Google Scholar
  33. 33.
    Brooks, D. (1997) Sensors Research Group, Brunel University, unpublished results.Google Scholar
  34. 34.
    Cossins, S., Connell, M., Cross, B., Winter, R. and Kellar, J. (1996) In-situ near-IR cure monitoring of a model epoxy matrix composite. Applied Spectroscopy, 50 (7), 900–904.CrossRefGoogle Scholar
  35. 35.
    Vrancken, K. C., Van Der Voort, P., Possemieers, K., Grobet, P. and Vansant, E. F. (1994) The physisorption and condensation of aminosilanes on silica gel in Chemical Modified Surfaces (eds J. J. Pesek and I. E. Leigh), Royal Society of Chemistry, London, pp. 46–57.Google Scholar
  36. 36.
    Talat, K. (1990) Smart skins and fibre-optic sensors application and issues. Proceedings SPIE Conference on Fibre Optic Smart Structures and Skins III, 1370, 103–114.CrossRefGoogle Scholar
  37. 37.
    Morgan, R. E., Ehlers, S. L. and Jones, K. L. (1991) Composite embedded fibre optic data links and related material/connector issues. Proceedings SPIE Conference on Fibre Optic Smart Structures and Skins IV, 1588, 189–197.CrossRefGoogle Scholar
  38. 38.
    Lu, Z. J. and Blaha, F. A. (1991) Application issues of fibre optic sensors in aircraft structures. Proceedings SPIE Conference on Fibre Optic Structures and Skins IV, 1588, 276–281.CrossRefGoogle Scholar
  39. 39.
    Zabaronick, N., Sherrer, D. W., Claus, R. O., Murphy, K. A., Duncan, P. and Shinpaugh, K. (1996) Remote optical interrogation of embedded optical fibre sensors. Proceedings SPIE — International Society for Optical Engineering, 2718, 234–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • G. F. Fernando
  • P. A. Crosby
  • T. Liu

There are no affiliations available

Personalised recommendations