Skip to main content

The application of optical fiber sensors in advanced fiber reinforced composites. Part 1: Introduction and issues

  • Chapter

Part of the book series: Optoelectronics, Imaging and Sensing Series ((OISS,volume 3))

Abstract

Advanced fiber reinforced composites (AFRCs) are a class of materials which are made up of a reinforcing phase and a matrix phase. The reinforcing phase can be short fibers or continuous fibers. Typical examples of fibers which are used include carbon, glass, silicon carbide and polyaramid. The matrix phase can be a thermoplastic, thermoset, ceramic or metal. A summary of selected properties for engineering materials is presented in Table 2.1. With reference to Table 2.1, it is readily apparent that the specific properties (property of interest divided by the density) of AFRCs are superior to those of other engineering materials. This makes AFRCs ideal materials for primary and secondary load-bearing applications where weight is at a premium. Hence there is extensive utilization for aerospace and other transport-based applications. The drive to reduce the overall weight of AFRCs has resulted in the development of hollow glass and carbon fibers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engineering Materials Handbook. Vol. 1. Composites (1987) ASM International.

    Google Scholar 

  2. Klocek, P., Roth, M. and Rock, R. D. (1987) Chalcogenide glass optical fibres and image bundles: property and applications. Optical Engineering, 26 (2), 88–95.

    Article  Google Scholar 

  3. Martin, A. (1998) Ph.D. Thesis, Brunel University.

    Google Scholar 

  4. UK Composites Association and Hunting Engineering (1997).

    Google Scholar 

  5. Ciba Geigy Trade Literature (1981) Fibredux 914.

    Google Scholar 

  6. Brooks, D. (1997) Department of Materials Engineering, Brunel University, unpublished results.

    Google Scholar 

  7. Badcock, R. A. and Fernando, G. F. (1995) An intensity-based optical fibre sensor for fatigue damage detection in advanced fibre-reinforced composites. Smart Materials and Structures, 4, 223–230.

    Article  Google Scholar 

  8. Martin, D. A. (1987) Optical fibre coating evaluation for composite embedment applications. Materials Research Society Symposia Proceedings, Pittsburgh, PA, 88, 19–26.

    Google Scholar 

  9. DiFrancia, C., Claus, R., Hellgeth, J. W. and Ward, T. C. (1989) Structure/property correlation of several polyimide optical fibre coatings for embedding in an epoxy matrix. SPIE, 1170, 505–512.

    Google Scholar 

  10. DiFrancia, C., Ward, T. C. and Claus, R. O. (1996) The single fibre pull-out test. 2. Quantitative evaluation of an uncatalysed TGDDM/DDS epoxy cure study. Composites Part A, 27A, 613–624.

    Article  Google Scholar 

  11. Oxford Electronics Ltd. (1997) Trade literature.

    Google Scholar 

  12. Sirkis, J. S. and Lu, I. P. (1993) On interphase modelling for optical fibre sensors embedded in unidirectional composite systems. ASME, Aerospace Division, Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, 35, 419–426.

    Google Scholar 

  13. Sirkis, J. S. and Lu, I. P. (1995) On interphase modeling of optical fibre sensors embedded in unidirectional composite systems. Journal of Intelligent Material Systems and Structures, 6, 199–209.

    Article  Google Scholar 

  14. Sirkis, J. S. and Grande, R. (1995) Nonlinear analysis of composite strength loss due to embedded ductile metal coated optical fibre sensors. Proceedings of SPIE, 2442, 152–159.

    Article  Google Scholar 

  15. Dasgupta, A. and Sirkis, J. S. (1992) Importance of coatings to optical fibre sensors. AIAA Journal, 30 (5), 88–99.

    Article  Google Scholar 

  16. King, W. W. and Aloisio, C. J., Jr (1997) Thermomechanical mechanism for delamination of polymer coating from optical fibers. Journal of Electronic Packaging, Transactions of the ASME,119 (2), 133–136.

    Google Scholar 

  17. Matthewson, M. J., Kurkian, C. R. and Hamblin, J R (1997) Acid stripping of fused silica optical fibres without strength degradation. Journal of Lightwave Technology,15 (3), 490–497.

    Google Scholar 

  18. Matejec, V., Hayer, M., Pavlovic, P., Kuncova, M., Kuncova, G. and Guglielmi, M. (1995) Effect of preparation of sol-gel coatings on the strength of optical fibres. Journal of Sol-Gel Science and Technology, 5 (3), 193–199.

    Article  Google Scholar 

  19. Schultheisz, C. R., Schutte, C. L., McDonough, W. G., Macturk, K. S. and McAuliffe, M. (1996) Effect of temperature and fibre coating on the strength of E-glass fibres and the E-glass/epoxy interface for single-fibre fragmentation samples immersed in water. ASTM Special Technical Publication, No. 1290, pp. 103–131, ASTM, Conshohocken, PA.

    Google Scholar 

  20. Doremus, R. H. (1995) Diffusion of water in silica glass, Journal of Materials Research, 10 (9), 2379–2389.

    Article  Google Scholar 

  21. Thomas, J. L. (1995) Interface region in glass fibre-reinforced epoxy resin composites. 2. Water absorption, voids and the interface. Composites, 26 (7), 477–485.

    Article  Google Scholar 

  22. Evans, T. (1997) High temperature optical fibre sensors. Final Year Project Dissertation, Department of Materials Engineering, Brunel University.

    Google Scholar 

  23. Levin, K. and Nilsson, S. (1996) Examination of reliability of fibre optic sensors embedded in carbon/epoxy composites. Proceedings SPIE–International Society for Optical Engineering, 2779 pp. 222–229.

    Article  Google Scholar 

  24. Martin, A., Fernando, G. F. and Hale, K. (1997) Impact damage detection in filament wound tubes using embedded optical fibre sensors. Smart Materials and Structures, 6, 470–476.

    Article  Google Scholar 

  25. Melle, S. M., Liu, K. and Measures, R. M. (1993) Practical fibre-optic grating strain gauge system. Applied Optics, 32 (19), 3601–3609.

    Article  Google Scholar 

  26. Fernando, G. F., Liu, T., Crosby, P. A., Doyle, C., Martin, A., Brooks, D., Ralph, B. and Badcock, R. A. (1997) A multi-purpose optical fibre sensor design for fibre reinforced composite materials. Journal of Measurement Science and Technology, 8, 1065–1079.

    Article  Google Scholar 

  27. Jensen, D. W., August, J. A. and Pascual, J. (1991) Compressive strength and stiffness reductions in graphite/bismaleimide laminates with embedded fibre-optic sensors. ADPA/AIAA/SPIE Conference on Active Materials and Adaptive Structures, November, Alexandria, VA. Editor G. J. Knowles, IOP, Bristol, pp. 129–134.

    Google Scholar 

  28. Mall, S., Dosedel, S. B. and Ho11, M. W. (1996) Performance of graphite—epoxy composites with embedded optical fibres under compression. Smart Materials and Structures, 5 (2), 209–215.

    Article  Google Scholar 

  29. Badcock, R. A. (1998) Ph.D. Thesis, Brunel University.

    Google Scholar 

  30. Nightingale, C. (1996) Final Year Project, Materials Engineering, Brunel University.

    Google Scholar 

  31. DiFrancia, C., Ward, T. C. and Claus, R. O. (1996) Single-fibre pull-out test. 1. Review and interpretation. Composites. Part A. Applied Science and Manufacturing, 27 (8), 597–612.

    Article  Google Scholar 

  32. Badcock, R. A. (1997) DERA Farnborough, SMART Structures Department, Guildford, Private communication.

    Google Scholar 

  33. Brooks, D. (1997) Sensors Research Group, Brunel University, unpublished results.

    Google Scholar 

  34. Cossins, S., Connell, M., Cross, B., Winter, R. and Kellar, J. (1996) In-situ near-IR cure monitoring of a model epoxy matrix composite. Applied Spectroscopy, 50 (7), 900–904.

    Article  Google Scholar 

  35. Vrancken, K. C., Van Der Voort, P., Possemieers, K., Grobet, P. and Vansant, E. F. (1994) The physisorption and condensation of aminosilanes on silica gel in Chemical Modified Surfaces (eds J. J. Pesek and I. E. Leigh), Royal Society of Chemistry, London, pp. 46–57.

    Google Scholar 

  36. Talat, K. (1990) Smart skins and fibre-optic sensors application and issues. Proceedings SPIE Conference on Fibre Optic Smart Structures and Skins III, 1370, 103–114.

    Article  Google Scholar 

  37. Morgan, R. E., Ehlers, S. L. and Jones, K. L. (1991) Composite embedded fibre optic data links and related material/connector issues. Proceedings SPIE Conference on Fibre Optic Smart Structures and Skins IV, 1588, 189–197.

    Article  Google Scholar 

  38. Lu, Z. J. and Blaha, F. A. (1991) Application issues of fibre optic sensors in aircraft structures. Proceedings SPIE Conference on Fibre Optic Structures and Skins IV, 1588, 276–281.

    Article  Google Scholar 

  39. Zabaronick, N., Sherrer, D. W., Claus, R. O., Murphy, K. A., Duncan, P. and Shinpaugh, K. (1996) Remote optical interrogation of embedded optical fibre sensors. Proceedings SPIE — International Society for Optical Engineering, 2718, 234–238.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernando, G.F., Crosby, P.A., Liu, T. (1999). The application of optical fiber sensors in advanced fiber reinforced composites. Part 1: Introduction and issues. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing Series, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6077-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6077-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4736-9

  • Online ISBN: 978-1-4757-6077-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics