Advertisement

Mathematical Concepts and Notation Used for Formulating and Solving Optimization Problems of Strategic Planning and Operations Management in Transportation Systems

  • Alexander S. Belenky
Part of the Applied Optimization book series (APOP, volume 20)

Abstract

The present chapter is aimed at acquainting the reader with a minimum of mathematical concepts, notations, and facts that are necessary for understanding, at the contemporary scientific level, the presentation of problems of mathematical modeling and those of using optimization methods for strategic planning and operations management in transportation systems. Essentially, a set of these concepts constitutes a language in which, nowadays, theoretical and applied scientific works on optimization, in particular, for strategic planning and operations management in transportation systems are written. Consequently, the more extensive “vocabulary” the reader has, the more he can learn and understand from scientific literature on transport control. In this sense, one can speak of an analogy between the role of the information given below in understanding problem statements and mathematical methods for solving the problems and the role of, for instance, “Basic English” in mastering the English language.

Keywords

Mathematical Concept Linear Inequality Normal System Discrete Random Variable Mathematical Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kolmogorov, A. N., and Fomin, S. V. Introductory Real Analysis. Englewood Cliffs, New York: Prentice-Hall, 1970.Google Scholar
  2. [2]
    Dieudonne, J. A. Foundations of Modern Analysis. New York: Academic Press, 1960.zbMATHGoogle Scholar
  3. [3]
    Rudin, W. Principles of Mathematical Analysis. New York: Mc. Graw Hill, 1976.zbMATHGoogle Scholar
  4. [4]
    Brudno, A. L. Teorija Funktzii Deistvitel’nogo Peremennogo (Theory of Function of Real Variable). Moscow: Nauka, 1971 [in Russian].Google Scholar
  5. [5]
    Wilson, R. J. Introduction to Graph Theory. Ney York: Academic Press, 1979.zbMATHGoogle Scholar
  6. [6]
    Kozyrev, V. P. “Graph.” In Matematicheskaja Entziklopedia (Mathematical Encyclopedia). Moscow: Sovetskaya Entsiklopedia, 1977, 1: 1105–1108 [in Russian].Google Scholar
  7. [7]
    Arkhangel’ckii, A. V. Konechnomernye Vektornye Prostranstva (Finite-Dimensional Vector Spaces). Moscow: Moscow State University, 1982 [in Russian].Google Scholar
  8. [8]
    Halmos, P. R. Finite Dimensional Vector Spaces. Princeton, NJ: Princeton University Press, 1948.Google Scholar
  9. [9]
    Efimov, N. V., and Rosendorn, E. R. Lineinaja Algebra i Mnogomernaja Geometrija (Linear Algebra and Multidimensional Geometry). Moscow: Nauka, 1970 [in Russian].Google Scholar
  10. [10]
    Nikaido, H. Convex Structures and Economic Theory. New York: Academic Press, 1968.zbMATHGoogle Scholar
  11. [11]
    Rockafellar, R. T. Convex Analysis. Princeton, NJ: Princeton University Press, 1970.Google Scholar
  12. [12]
    Kurosh, A. G. Higher Algebra. Moscow: Mir Publishers, 1975.Google Scholar
  13. [13]
    Pontryagin, L. S. Ordinary Differential Equations. Reading, Mass.: AdissonWesley Pub. Co., 1962.zbMATHGoogle Scholar
  14. [14]
    Arnold, V. I. Ordinary Differential Equations. Cambridge, MIT Press, 1973.zbMATHGoogle Scholar
  15. [15]
    Mikhailov, V. P. Differentzial’nye Uravnenija v Chastnykh Proizvodnykh (Partial Differential Equations). Moscow: Nauka, 1978 [in Russian].Google Scholar
  16. [16]
    Hennequin, P. L., and Tortrat, A. Theorie des Probabilites et Quelques Applications. Paris, Masson, 1965.zbMATHGoogle Scholar
  17. [17]
    Ventzel, E. S. Teorija Verojatnostei (Probability Theory). Moscow: Nauka, 1971 [in Russian].Google Scholar
  18. [18]
    Belen’kii, V. Z., Volkonskii, B. A., Ivankov, S. A., at. al. Iterativnye Metody v Teorii Igr i Programmirovanii (Iterative Methods in Game Theory and Programming). Moscow: Nauka, 1974 [in Russian].Google Scholar
  19. [19]
    Polyak, B. T. Introduction to Optimization. New York: Optimization Software, Publications Division, 1987.Google Scholar
  20. [20]
    Yudin, D. B., and Yudin, A. D. Chislo i Mysl’. Matematiki Izmerjajut Slozhnost’ (Number and Thought. Mathematicians Measure Complexity). Moscow: Znanie, 1985; No. 8 [in Russian].Google Scholar
  21. [21]
    Young, L. C. Lectures on the Calculus of Variations and Optimal Control Theory. Philadelphia, London, Toronto: W. B. Saunders Co., 1969.Google Scholar
  22. [22]
    Boltianskiy, V. G. Mathematical Methods of Optimal Control. New York: Holt, Rinehart, and Winston, 1971.Google Scholar
  23. [23]
    Hadley, G. F. Nonlinear and Dynamic Programming. Reading, Mass.: AdissonWesley Pub. Co., 1964.zbMATHGoogle Scholar
  24. [24]
    Hu, T. C. Integer Programming and Network Flows. Reading, Mass.: AdissonWesley Pub. Co., 1969.zbMATHGoogle Scholar
  25. [25]
    Lancaster, K. Mathematical Economics. New York: Macmillan, 1968.Google Scholar
  26. [26]
    Murtagh, B. A. Advanced Linear Programming: Computation and Practice. New York, London: McGraw-Hill International Book Co., 1981.Google Scholar
  27. [27]
    loffe, A. D., and Tikhomirov, V. M. Theory of Extremal Problems. Amsterdam; New York: North Holland Pub. Co., Sole distributors for the U.S.A. and Canada: Elsevier, North-Holland, 1979.Google Scholar
  28. [28]
    Gabasov, R., and Kirillova, F. M. The Qualitative Theory of Optimal Processes. New York: H. Dekker, 1976.zbMATHGoogle Scholar
  29. [29]
    Vorob’ev, N. N. Osnovy Teorii Igr. Beskoalitzionnye Igry (Foundations of Game Theory. Non-Cooperative Games). Moscow: Nauka, 1984 [in Russian].Google Scholar
  30. [30]
    Yudin, D. B. Vichislitel’nye Metody Prinjatija Reschenii (Computational Methods of Decision-Making Theory). Moscow: Nauka, 1989 [in Russian].Google Scholar
  31. [31]
    Nemirovskii, A. S., and Yudin, D. B. Problem Complexity and Method Efficiency in Optimization. Chichester, New York: John Wiley zhaohuan Sons Publ. Co., 1983.Google Scholar
  32. [32]
    Maximey, I. V. Imitatzionnoe Modelirovanie na EVM (Computer Simulation Modeling). Moscow: Radio i svyaz’, 1988 [in Russian].Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alexander S. Belenky

There are no affiliations available

Personalised recommendations