Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 20))

  • 676 Accesses

Abstract

Let G(V, E) be a network whose vertices (nodes), origins and destinations of freights, form a set V, arcs connecting these vertices form a set E, and arcs from the set E represent transportation communication lines. An ordered sequence of directed arcs from E, where the end of any arc except for the last one is the beginning of another (the only) arc, and the beginning of any arc except for the first one is the end of another (the only) arc, is called a route. Here, the beginning of the first arc (vertex) and the end of the last arc (vertex) of a route are called the origin and the end of the route, respectively. If the origin and the end of a route coincide, the route is called a closed route or a cycle [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovetskii, S. E., Melamed, I. I., and Plotinskii, Yu. M. Modeli i Metody Reschenia Zadach Marschrutizatzii na Transportnoi Seti (Models and Methods of Solving Routing Problems on Transportation Network). Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management). Moscow: VINITI, 1982; 3, [in Russian].

    Google Scholar 

  2. Aven, O. I, Lovetskii, S. E., and Moiseenko, G. E. Optimizatzia Transportnykh Potokov (Optimization of Transportation Flows). Moscow: Nauka, 1985 [in Russian].

    Google Scholar 

  3. Burkov, V. N., and Rubinstein, M. I. “Algorithms for Solving Freight Transportation Problems.” In Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management ). Moscow: Organization of Transportation Management ). 1984; 4: 3–55 [in Russian].

    Google Scholar 

  4. Bellman, R. E., and Dreyfus, S. E. Applied Dynamic Programming. Princeton, NJ: Princeton University Press, 1962.

    MATH  Google Scholar 

  5. Hu, T. Integer Programming and Network Flows. Reading, Mass.: AdissonWesley Pub. Co., 1969.

    MATH  Google Scholar 

  6. Frumkin, M. A. Slozhnost’ Diskretnykh Zadach (Complexity of Discrete Problems). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1981 [in Russian].

    Google Scholar 

  7. Plotinskii, Yu. M. Generalized delivery problem. Automation and Remote Control. 1973; 34, No. 6: 946–949.

    MATH  Google Scholar 

  8. Melamed, I. I., and Plotinskii, Yu. M. Heuristic algorithm for the generalized delivery problem. Automation and Remote Control. 1979; 40, No. 12: 1845–1849.

    MATH  Google Scholar 

  9. Borodin, V. V, Melamed, I. I., and Plotinskii, Yu. M. “Routing of container shipments by motor transport.” In Collected Works. Moscow: Izd. Institut Problem Upravlenia (Institute of Control Sciences, USSR Academy of Sciences ), 1979; No. 20: 23–27 [in Russian].

    Google Scholar 

  10. Orloff, C. F. A fundamental problem in vehicle routing. Networks. 1974; No. 4: 35–64.

    Article  MathSciNet  MATH  Google Scholar 

  11. Rao, M. R. A note on the multiple travelling salesmen problem. Operations Research. 1980; 28, No. 3: 628–632.

    Article  MATH  Google Scholar 

  12. Melamed, I. I. “On the problem of several travelling salesmen.” In Collected Works. Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), 1981; No. 647: 72–79 [in Russian].

    Google Scholar 

  13. Frederickson, G. N., Hecht, M. S., and Kim, C. E. Approximation algorithms for some routing problems. SIAM Journal on Computing. 1978; 7, No. 2: 178–193.

    Article  MathSciNet  Google Scholar 

  14. Edmonds, J., and Johnson, E. L. Matching, Euler tours, and the Chinese postman. Mathematical Programming. 1973; No. 5: 88–124.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirzhner, V. N., and Rublinetskii, V. I. “About the procedure ”go to the nearest one“ in the travelling salesman problem.” In Collected Works. Khar’kov: Izd. KhFTINT (Khar’kov Phisics and Technology Institute of Low Temperatures), 1973; No. 4: 40–41 [in Russian].

    Google Scholar 

  16. Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karol, C. An algorithm for the travelling salesman problem. Operations Research. 1963; 11, No. 6: 972–989.

    Article  MATH  Google Scholar 

  17. Finkel’stein, Yu. Yu. Priblizhennye Metody i Prikladnye Zadachi Diskretnogo Programmirovania (Approximate Methods and Applied Problems of Discrete Programming). Moscow: Nauka, 1976 [in Russian].

    Google Scholar 

  18. Carpaneto, G., and Toth, P. Some new branching and bounding criteria for the asymmetric travelling salesman problem. Management Science. 1980; 26, No. 7: 736–743.

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith, T. H. C., and Thomson, G. L. A LIFO implicit enumeration search algorithm for the symmetric traveling salesman problem using Held and Karp’s 1-tree relaxation. Annals of Discrete Mathematics. 1977; 1: 479–493.

    Article  Google Scholar 

  20. Jonker, R., and Volgenant, T. Nonoptimal edges for the symmetric traveling salesman problem. Operations Research. 1984; 32, No. 4: 837–846.

    Article  MathSciNet  MATH  Google Scholar 

  21. Held, M., and Karp, R. Dynamic programming application to problems of ordering. Kiberneticheskii Sbornik. Moscow: Mir Publishers, 1964; No. 9: 202–212 [in Russian].

    Google Scholar 

  22. Miliotis, P. Integer programming approaches to the travelling salesman problem. Mathematical Programming. 1976; 10, No. 3: 367–378.

    Article  MathSciNet  MATH  Google Scholar 

  23. Volgenant, T., and Jonker, R. The symmetric travelling salesman problem and the edge exchanges in minimal 1-trees. European Journal of Operational Research. 1983; 12, No. 4: 394–403.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jongens, K., and Volgenant, T. The symmetric clustered travelling salesman problem. European Journal of Operational Research. 1985; 19, No. 1: 68–75.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalantari, B., Hill, A. V., and Arora, S. R. An algorithm for the travelling salesman problem with pickup and delivery customers. European Journal of Operational Research. 1985; 22, No. 3: 377–386.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sukharev, A. G., Timokhov, A. V., and Fedorov, V. V Kurs Metodov Optimizatzii (A Course on Optimization Methods). Moscow: Nauka, 1986 [in Russian].

    Google Scholar 

  27. Telemtaev, M. M. An algorithm for the travelling salesman problem. Izvestija Akadernii Nauk KSSR. Matematika-Fizika. 1986; No. 1: 40–43 [in Russian].

    Google Scholar 

  28. Kaspshitskaya, M. F., and Glushkova, V. V. Some questions of solving the travelling salesman problem. Kibernetika. Kiev, 1985; No. 5: 121–122 [in Russian].

    MathSciNet  Google Scholar 

  29. Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1985; 35–39 [in Russian].

    Google Scholar 

  30. Glushkova, V. V. “Finding the lower bound of the goal functional for the travelling salesman problem with moving objects.” In Pakety Prikladnykh Programm i Chislennye Metody (Packages of Applied Programs and Numerical Methods). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1988; 30–34 [in Russian].

    Google Scholar 

  31. Matematicheskii Apparat Ekonomicheskogo Modelirovania (Mathematic Tools of Economic Modelling). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1983 [in Russian].

    Google Scholar 

  32. Balas, E., and Christofides, N. A restricted Lagrangean approach to the travelling salesman problem. Mathematical Programming. 1981; 21, No. 1: 19–46.

    Article  MathSciNet  MATH  Google Scholar 

  33. Jeromin, B., and Korner, F. Sharp bounds for Karp’s “patching” -algorithm for the approximate solution of the travelling salesman problem. Optimization. 1986; 17, No. 1: 85–92.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ukhina, N. V. “An effective heuristic algorithm for the travelling salesman problem solution.” In Matematicheskoe Modelirovanie i Avtomatizirovannye Sistemy v Sudostroenii ( Mathematical Modelling and Automated Systems in Shipbuilding ). Leningrad, 1986; 39–44 [in Russian].

    Google Scholar 

  35. Brunacci, F. A. A useful transform of standard input data for a classical NP-complete problem. European Journal of Operational Research. 1985; 19, No. 3: 390–396.

    Article  MathSciNet  MATH  Google Scholar 

  36. Jeromin, B. and Korner, F. On the refinement of bounds of heuristic algorithms for the travelling salesman problem. Mathematical Programming. 1985; 32 No. 1: 114–117.

    Google Scholar 

  37. Sapko, A. V. “On solving a large-dimension travelling salesman problem.” In Proektirovanie i Razrabotka Paketov Prikladnykh Programm (Design and Development of Software Packages). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1987; 68–71 [in Russian].

    Google Scholar 

  38. Vasil’ev, Yu. S., Belobabov, V. V., and Mikhailichenko, V. M. Ob Odnom Podkhode k Rescheniju Zadachi Kommivojazhera (On One Approach to Solving the Travelling Salesman Problem). Alma-Ata: KazGU (Kazakhsky State University), 1985; Unpublished manuscript, Kazakhskiy NIITI 08.10.85 No.1066-KA. [in Russian].

    Google Scholar 

  39. Serdiukov, A. I. “Polynomial algorithms with estimates for the travelling salesman problem.” 30 Internationales Wissenschaftliches Kolloquium. Ilmenau, 2125 Oct., 1985, No. 5, Vortragsr. F. Ilmenau, 1985; 105–108.

    Google Scholar 

  40. Shelestov, A. A. K Voprosu o Reschenii Zadachi Kommivojazhera (On the Travelling Salesman Problem Solution). Tomsk: Izd. TIASUR (Tomskii Institut Avtomatizirovannikh System Upravleniya i radioelectroniki), 1985; Unpublished manuscript, VINITI 22.04.85 No. 2633–85 [in Russian].

    Google Scholar 

  41. Estreikh, I. V. “Decomposition algorithm for the travelling salesman problem solution.” In Maschinnye Metody Planirovanija Eksperimenta i Optirnizatzii Mnogofaktornikh Sistem (Computer Methods of Experiment Planning and Optimization of Multifactor Systems). Novosibirsk: Izd. NETI (Novosibirsk ElectroTechnological Institute), 1987; 97–102 [in Russian].

    Google Scholar 

  42. Deineko, V. G. Geometricheskie Razreschennie Sluchai Zadachi o Kommivojazhere (Geometrically Solvable Cases of the Travelling Salesman Problem). Unpublished manuscript, VINITI, 07.12.88 No. 8630-V88 [in Russian].

    Google Scholar 

  43. Aizenshtadt, V. S., and Maksimovitch, E. P. Some classes of travelling salesman problems. Kibernetika. 1978; No. 4: 80–83 [in Russian].

    Google Scholar 

  44. Rubinstein, M. I. On algorithms for assignment problems. Automation and Remote Control. 1981; 42, No. 7: 970–976.

    Google Scholar 

  45. Grober, E. Uber eine Methode zur Losung des Zuordnungs-problems. Wissenschaftliche Zeitschrift. Technische Hochschule. Dresden: Ilmenau, 1985; 27, No. 1: 39–47.

    Google Scholar 

  46. Townsend, W. An application of the assignment model to bus crew rostering. IMA Journal of Mathematics and Management. 1986–1987; 1, No. 1: 45–52.

    Google Scholar 

  47. Carpaneto, G., Martello, S., and Toth, P. Algorithms and codes for the assignment problem. Annals of Operations Research. 1988; 13, No. 1–4: 193–223.

    MathSciNet  Google Scholar 

  48. Krikun, V. S. O Tochnom Metode Reschenija Kvadratnoi Zadachi o Naznachenijakh (An Exact Method for Solving the Quadratic Assignment Problem). Izd. IM AN BSSR (Institute of Mathematics, Belorussia Academy of Sciences), Preprint, 1988; No. 18 [in Russian].

    Google Scholar 

  49. Sergeyev, S. I. “Boundaries for the quadratic assignment problems.” In Modeli i Metody Issledovanija Operatzii (Models and Methods of Operations Research). Novosibirsk: Nauka, 1988: 112–134 [in Russian].

    Google Scholar 

  50. Christofides, N. Bounds for the travelling-salesman problem. Operations Research. 1972; 20, No. 5: 1044–1056.

    Article  MathSciNet  MATH  Google Scholar 

  51. Volgenant, A., and Jonker, R. Improving Christofides’ lower bound for the travelling salesman problem. Optimization. 1985; 16, No. 5: 691–704.

    Article  MathSciNet  MATH  Google Scholar 

  52. Volgenant, A., van der Sluis, H.J., and Jonker, R. Better assignment lower bounds for the Euclidean travelling salesman problem. Optimization. 1987; 18, No. 3: 393–404.

    Article  MathSciNet  MATH  Google Scholar 

  53. Alekseyev, A. O. A multivariant travelling-salesman problem. U.S.S.R. Computational Mathematics and Mathematical Physics. 1985; 25, No. 2: 200–201.

    Article  Google Scholar 

  54. The travelling salesman problem. A guided tour of combinatorial optimization. Edited by Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., and Shmoys, D. B. New York: John Wiley and Sons Publ.Co., 1985.

    Google Scholar 

  55. Christofides N., and Eilon S. An algorithm for vehicle-dispatching problem. Operational Research Quarterly. 1969; 20, No. 3: 309–318.

    Article  Google Scholar 

  56. Fleischmann, B. A new class of cutting planes for the symmetric travelling salesman problem. Mathematical Programming. 1988; 40, No. 3: 225–246.

    Article  MathSciNet  MATH  Google Scholar 

  57. Gutin, G. M. Efficiency of a local algorithm for solving the travelling salesman problem. Automation and Remote Control. 1988; 49, No. 11: 1514–1519.

    MathSciNet  MATH  Google Scholar 

  58. Gul’anitsky, L. F., and Sapko, A. V. “Decomposition approach to solving a large-dimension travelling salesman problem.” In Pakety Prikladnykh Programm i Chislennye Metody (Application Software Packages and Numerical Methods). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1988; 8–13 [in Russian].

    Google Scholar 

  59. Melamed, I. I., Sergeyev, S. I., and Sigal, I. H. The travelling salesman problem. Automation and Remote Control. 1989; 50, No. 9: 1147–1173; No. 10: 1303–1324; No. 11: 1459–1479.

    Google Scholar 

  60. Ulusoy, G. The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research. 1985; 22, No. 3: 329–337.

    Article  MathSciNet  MATH  Google Scholar 

  61. Kulkarni, R. V., and Bhave, P. R. Integer programming formulations of vehicle routing problems. European Journal of Operational Research. 1985; 20, No. 1: 58–67.

    Article  MathSciNet  Google Scholar 

  62. Wetzel, R. Fahrplangestaltung via Spaltenerzeugung. Wissenschaftliche Berliner Technische Hochschule. Leipzig, 1986; No. 7: 49–51.

    Google Scholar 

  63. Laporte, G., and Nobert, Y. “Comb inequalities for the vehicle routing problem.” Contribution to Operations Research and Mathematical Economics. 1, Methods of Operations Research, 51, Athenaum, Hain, Hanstein, Konigstein, 1984; No. 1: 271–276.

    MathSciNet  Google Scholar 

  64. Skubalska, E. Zastosowanie metody podzialu i ograniczen do optymalnego ustalania tras pojazdow. Przeglad Statystyczny. 1984(1985); 31, No. 1–2: 65–81.

    Google Scholar 

  65. Balakrishnan, A., Ward, J. E., and Wong, R. T. Integrated facility location and vehicle routing models: recent work and future prospects. American Journal of Mathematical and Management Sciences. 1987; 7, No. 1–2: 35–61.

    MathSciNet  Google Scholar 

  66. Desrosiers, J., Soumis, F., and Desrochers, M. Routing with time windows by column generation. Networks. 1984; 14, No. 4: 545–565.

    Article  MATH  Google Scholar 

  67. Sexton, T. R., and Young-Myung Choi. Pickup and delivery of partial loads with “soft” time windows. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 369–398.

    MATH  Google Scholar 

  68. Desrosiers, J., Dumas, Y., and Soumis, F. A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 301–325.

    MATH  Google Scholar 

  69. Bodin, L. D., and Sexton, T. R. “The multi-vehicle subscriber dial-a-ride problem.” In Delivery Urban Services. View Towards Applied Management Science and Operations Research. Amsterdam, e.a., 1986; 73–86.

    Google Scholar 

  70. Politika, E. V. Rekursivnyi Algoritm Reschenija Odnoi Zadachi Marschrutizatzii (A Recursive Algorithm for Solving One Routing Problem). Kiev: VNII pochtovoy svyazi, 1985; Unpublished manuscript, TsNTI “Informsvyaz”’ (Center of Scientific and Technological Information “Informsvyaz”’), 30.12.85 No. 765—SV [in Russian].

    Google Scholar 

  71. Garcia-Diaz, A. A heuristic circulation-network approach to solve the multi-travelling salesman problem. Networks. 1985; 15, No. 4: 455–467.

    Article  MATH  Google Scholar 

  72. Hoon Liong Ong, and Moore, J. B. Worst—case analysis of some heuristics for the rn-salesman problem. Material Flow. 1985; 2, No. 4: 203–209.

    Google Scholar 

  73. Akhlebininskiy, M. Yu., and Konstantinov, M. S. Choice of strategy for servicing of objects in certain parametric problem of M travelling salesmen. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1989; 27, No. 5: 147–152.

    MathSciNet  Google Scholar 

  74. Desrosiers, J., Soumis, F., Desrochers, M., and Sauve, M. Methods for routing with time windows. European Journal of Operational Research. 1986; 23, No. 2: 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  75. Kolen, A. W. J., Rinnoy Kan, A. H. G., and Trienekens, H. W. J. M. Vehicle routing with time windows. Operations Research. 1987; 35, No. 2: 266–273.

    Article  MathSciNet  MATH  Google Scholar 

  76. Cook, T. M., and Russel, R. A. A simulation and statistical analysis of stochastic vehicle routing with timing constraints. Decision Sciences. 1978; 9 No. 4: 673687.

    Google Scholar 

  77. Solomon, M. M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research. 1987; 35, No. 2: 254–265.

    Article  MathSciNet  MATH  Google Scholar 

  78. Buxey, G. Designing routes to minimize fleet operating cost. European Journal of Operational Research. 1985; 21, No. 1: 57–64.

    Article  MathSciNet  Google Scholar 

  79. Laporte, G., Mercure, H., and Nobert, Y. An exact algorithm for the asymmetrical capacitated vehicle routing problem. Networks. 1986; 16, No. 1: 33–46.

    Article  MathSciNet  MATH  Google Scholar 

  80. Laporte, G., Nobert, Y., and Desrochers, M. Optimal routing under capacity and distance restrictions. Operations Research. 1985; 33, No. 5: 1050–1073.

    Article  MathSciNet  MATH  Google Scholar 

  81. Brudaru, O. Hamiltonian circuits with generalized cost. Optimization. 1987; 18, No. 3: 405–411.

    Article  MathSciNet  MATH  Google Scholar 

  82. Borodin, V. V., Lovetskii, S. E., and Plotinskii, Yu. M. “Transportation means traffic routing.” In Planirovanie v Transportnykh Sistemakh: Modeli, Metody, Informatzionnoe Obespechenie (Planning in Transportation Systems: Models, Methods, Software.) Collected works. Moscow: Izd. Institut Problem Upravleniya ( Institute of Control Sciences, USSR Academy of Sciences ), 1978; No. 17: 26–40 [in Russian].

    Google Scholar 

  83. Gaskell, T. J. Bases for vehicle fleet scheduling. Operational Research Quarterly. 1967; 18, No. 3: 281–295.

    Article  Google Scholar 

  84. Tillman, F. A., and Cochran, H. A heuristic approach for solving the delivery problem. The Journal of Industrial Engineering. 1968; 19, No. 7: 354–358.

    Google Scholar 

  85. Holmes, R. A., and Parker, R. G. A vehicle scheduling procedure based upon savings and a solution perturbation scheme. Operational Research Quarterly. 1976; 27, No. 1: 83–92.

    Article  MATH  Google Scholar 

  86. Knowles, K. The use of a heuristic tree-search for vehicle routing and scheduling. Operational Research Society Conference. London, 1967; Oxford, 1968.

    Google Scholar 

  87. Lovetskii, S. E., Zhitkov, V. A., and Plotinskii, Yu. M. “Routing problems for shipments in a transportation network.” In Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management). Moscow: VINITI, 1980; 2: 74–128 [in Russian].

    Google Scholar 

  88. Fisher, M., and Jaikumar, R. A generalized assignment heuristic for vehicle routine. Networks. 1981; 11, No. 2: 109–124.

    Article  MathSciNet  Google Scholar 

  89. Christofides. N., and Beasley, J. E. The period routing problem. Networks. 1984; 14, No. 2: 237–256.

    Google Scholar 

  90. Psaraftis, H. N. Scheduling large-scale advance-request dial-a-ride systems. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 327–367.

    MATH  Google Scholar 

  91. Perl, J. The multidepot routing allocation problem. American Journal of Mathematical and Management Sciences. 1987; 7, No. 1–2: 7–34.

    MathSciNet  MATH  Google Scholar 

  92. Ogryczak, B., and Ogryczak, W. Optymalizacja tras dostaw z wykorzystaniem mikrokomputera IBM-PC. Przeglad Statystyczny. 1989; No. 1: 81–98.

    Google Scholar 

  93. Magnanti, T. L. Combinatorial optimization and vehicle fleet planning: perspectives and prospects. Networks. 1981; 11, No. 2: 179–213.

    Article  MathSciNet  Google Scholar 

  94. Ford, L., and Fulkerson, D. Flows in Networks. Princeton, NJ: Princeton University Press, 1962.

    MATH  Google Scholar 

  95. Lovetskii, S. E., and Melamed, I. I. Static flows in networks. Automation and Remote Control. 1987; 48, No. 10: 1269–1291.

    MathSciNet  Google Scholar 

  96. Cunningham, W. H. Theoretical properties of the network simplex method. Mathematics of Operations Research. 1979; 4, No. 2: 196–208.

    Article  MathSciNet  MATH  Google Scholar 

  97. Bertsekas, D. P. A unified framework for primal-dual methods in minimum cost network flow problems. Mathematical Programming. 1985; 32, No. 2: 125–145.

    Article  MathSciNet  MATH  Google Scholar 

  98. Cunnigham, W. H. A network simplex method. Mathematical Programming. 1976; 11, No. 71: 105–116.

    Article  MathSciNet  Google Scholar 

  99. Glover, F., Klingman, D., Mote, J., and Whitman, D. Comprehensive computer evaluation and enhancement of maximum flow algorithms. Applications of Management Science. 1983; 3, 109–175.

    Google Scholar 

  100. Glover, F., Klingman, D., Mote, J., and Whitman, D. A primal simplex variant for the maximum-flow problem. Naval Research Logistics Quarterly. 1984; 31: 41–61.

    Article  MATH  Google Scholar 

  101. Adel’son-Velskii, G. M., Dinitz, E. A., and Karzanov, A. V. Potokovye Algoritmy (Flow Algorithms). Moscow Nauka, 1975 [in Russian].

    Google Scholar 

  102. Minieka, E. Optimization Algorithms for Networks and Graphs. New York: Dekker M., 1978.

    MATH  Google Scholar 

  103. Dinic, E. A. Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Mathematics. 1970; 11, No. 5: 1277–1280.

    Google Scholar 

  104. Karzanov, A. V. An economical algorithm for finding the maximum network flow. Ekonomika i Matematicheskie Metody. 1975; XI, No. 4: 723–729 [in Russian].

    MathSciNet  Google Scholar 

  105. Nakayama, A. A polynomial algorithm for the maximum balanced flow problem with a constant balancing rate function. Journal of the Operations Research Society of Japan. 1986; 29, No. 4: 400–410.

    MathSciNet  MATH  Google Scholar 

  106. Kamesam, P. V., and Meyer, R. R. Multipoint methods for separable nonlinear networks. Mathematical Programing Study. 1984; 22; 185–205.

    Article  MathSciNet  MATH  Google Scholar 

  107. Siedersleben, J. A dual approach to flows with gains VII Symposium on Operations Research. Hochschule St. Gallen. August 19–21, 1982, Proc. Sekt.1–3, Konigstein/Ts., 1983; 319–325.

    Google Scholar 

  108. Bornstein, C. T., and Rust, R. Minimizing a sum of staircase functions under linear constraints. Optimization. 1988; 19, No. 2: 181–190.

    Article  MathSciNet  MATH  Google Scholar 

  109. Goldfard, D., and Grigoriadis, M. D. A computational comparison of the Dinic and network simplex methods for maximum flow. Annals of Operations Research. 1988; 13, No. 1–4: 83–123.

    MathSciNet  Google Scholar 

  110. Bertsekas, D. P., and Tseng, P. The relax codes for linear minimum cost network flow problems. Annals of Operations Research. 1988; 13, No. 1–4: 125–190.

    Article  MathSciNet  Google Scholar 

  111. Hu, T. Integer Programming and Network Flows. Reading, Mass.: AdissonWesley Pub. Co., 1969.

    MATH  Google Scholar 

  112. Dinic, E. A. Economnye Algoritmy dlja Reschenija Zadach Transportnogo Tipa (Economical Algorithms for Solving Transportation-type Problems). Abstract of Ph. D. Thesis, Moscow, 1973 [in Russian].

    Google Scholar 

  113. Minieka, E. Maximal, dynamic and lexicographic flows. Operations Research. 1973; 21, No. 2: 517–527.

    Article  MathSciNet  MATH  Google Scholar 

  114. Rothfarb, W., Shein, N. P., and Frisch, I. T. Common terminal multicommodity flow. Operations Research. 1968; 16, No. 1: 202–205.

    Article  MATH  Google Scholar 

  115. Karzanov, A. V. “One class of problems of maximum commodity flows with integer optimum solutions.” In Modelirovanie i Optimizatzija Sistem Slozhnoi Struktury (Modelling and Optimization of Complex Structure Systems). Omsk: Izd. OmGU (Omsk State University), 1987; 103–121 [in Russian].

    Google Scholar 

  116. Demidovich, O. I. Vichislenie Nizhnikh Otzenok v Mnogoekstremal’noi Zadache o Potoke Minimal’noi Stoimosti (Calculating Lower Estimates in Multimodal Minimum Cost Flow Problem). Moscow: Izd. VTz AN SSSR ( Computer Center, USSR Academy of Sciences ), 1988 [in Russian].

    Google Scholar 

  117. Gersht, A., and Shulman, A. A new algorithm for solution of the minimum cost multicommodity flow problem. 26th IEEE Conference on Decision Science and Control. Los Angeles, California. December 9–11, 1987; 1, New York, 1987: 748758.

    Google Scholar 

  118. Pang, Jong-Shi, and Yu, Chang-Sung. Linearized simplicial decomposition methods for computing traffic equilibria on networks. Networks. 1984; 14, No. 3: 427438.

    Google Scholar 

  119. Aiello, A., Burattini, E., Furnari, M., and Massarotti, A. On the computational complexity of the traffic equilibrium flow problem. Atti delle Giornate di Lavoro della Associazione Italiana di Ricerca Operativa (AIRO), Napoli, 26–28 sett., 1983. Napoli, 1983; 203–213.

    Google Scholar 

  120. Defermos S. C., and Nagurney A. Sensitivity analysis for the asymmetric network equilibrium problem. Mathematical Programming. 1984; 28, No. 2: 174–184.

    Article  MathSciNet  Google Scholar 

  121. Steinberg, R., and Stone, R. E. The prevalence of paradoxes in transportation equilibrium problems. Transportation Science. 1988; 22, No. 4: 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  122. Hearn, D. W., Lawphongpanich, S., and Ventura J. A. Restricted simplicial decomposition: computation and extensions. Mathematical Programming Study. 1987; No. 31: 99–118.

    Article  MathSciNet  MATH  Google Scholar 

  123. Hearn, D. W., Lawphongpanich, S., and Nguyen, S. Convex programming formulations of the asymmetric traffic assignment problem. Transportation Research. 1984; 18B, No. 4–5: 357–365.

    MathSciNet  Google Scholar 

  124. Aronson, J. E. The multiperiod assignment problem: a multicommodity network flow model and specialized branch and bound algorithm. European Journal of Operational Research. 1986; 23, No. 3: 367–381.

    Article  MathSciNet  Google Scholar 

  125. Moiseenko, G. E. A multicommodity network flow problem with commodity conversion. Automation and Remote Control. 1984; 45, No. 11: 1464–1470.

    MathSciNet  MATH  Google Scholar 

  126. Glover, F., and Klingman, D. The simplex SON algorithm for LP/embedded network problems. Mathematical Programming Study. 1981; 15: 148–176.

    Article  MathSciNet  MATH  Google Scholar 

  127. Lovetskii, S. E., and Melamed, I. I. “Optimum control of transportation flows.” In Upravlenie v Transportnykh Sistemakh (Control in Transportation Systems). Moscow: Izd. Institut Problem Upravleniya ( Institute of Control Sciences, USSR Academy of Sciences ), 1985; 5–8 [in Russian].

    Google Scholar 

  128. Boltianskiy, V. G. Optimum Control of Discrete Systems. New York: John Wiley and Sons Publ.Co., 1978.

    Google Scholar 

  129. Lovetskii, S. E., and Melamed, I. I. Dynamic flows in networks. Automation and Remote Control. 1987; 48, No. 11: 1417–1434.

    MathSciNet  Google Scholar 

  130. Bellmore, M., and Vemuganti, R. R. On multi-commodity maximal dynamic flows. Operations Research. 1973; 21, No. 1: 10–21.

    Article  MathSciNet  MATH  Google Scholar 

  131. Gale, D. Transient flows in networks. The Michigan Mathematical Journal. 1959; 6: 59–63.

    Article  MathSciNet  MATH  Google Scholar 

  132. Ciurea, E. Two classes of maximal dynamic flows. Economic Computation and Economic Cybernetics Studies and Research. 1985; 20, No. 1: 73–79.

    MathSciNet  Google Scholar 

  133. Jarvis, J.J., and Ratliff, H. D. Some equivalent objectives for dynamic network flow problems. Management Science. 1982; 28, No. 1: 106–109.

    Article  MathSciNet  MATH  Google Scholar 

  134. Aronson, J. E., and Chen, B. D. A forward network simplex algorithm for solving multiperiod network flow problems. Naval Research Logistics Quarterly. 1986; 33, 445–467.

    Article  MathSciNet  MATH  Google Scholar 

  135. Lovetskii, S. E., and Melamed, I. I. “Optimum control of dynamic transportation flows under random disturbances.” In Matematicheskie Metody Reschenija Zadach Transporta (Mathematical Methods of Transport Problems Solution). Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), Collected works, 1988; No. 802: 67–90 [in Russian].

    Google Scholar 

  136. Davydov, E. G. Igry, Grafy, Resursy (Games, Graphs, Resources). Moscow: Radio i svyaz’, 1981 [in Russian].

    Google Scholar 

  137. Trietsch, D. Comprehensive design of highway networks. Transportation Science. 1987; 21, No. 3: 26–35.

    Article  Google Scholar 

  138. Mikhailenko, V. M., Kushnir, G. A., and Shmeleva, T. F. “Transportation schemes optimization by flow programming methods.” In Avtomatizirovannye Sistemy Uprablenija i Pribory Avtomatiki ( Automated Control Systems and Devices ). Khar’kov, 1987; No. 84: 44–47 [in Russian].

    Google Scholar 

  139. Vil’chevskii, N. O. Flexibility of production systems of transport. Sbornik Trudov. VNII Sistemnykh Issledovanii (Collected works. All- Union Institute of System Studies). 1986; No. 19: 114–119 [in Russian].

    Google Scholar 

  140. Pel’tsverger, V. V., and Khavronin, O. V. A decompositional approach to the solution of complex combinatorial optimization problems. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1988; 26, No. 5: 143–150.

    MathSciNet  MATH  Google Scholar 

  141. Malashenko, Yu. E., and Novikova, N. M. Mnogokriterialnyi i Maksiminnyi Analiz Mnogoproductovykh Seteji (Multicriteria and Maximin Analysis of Multicommodity Networks). Moscow: Izd. VTz AN SSSR ( Computer Center, USSR Academy of Sciences ), 1988 [in Russian].

    Google Scholar 

  142. Vasil’eva, E. M., and Levit, V. Yu. “An algorithm for recursive constraints account and modern technology of solving the network development problem.” In Voprosy Soverschenstvovanija i Primenenija Ekonomiko-Matematicheskikh Metodov na Transporte. Trudy IKTP pri Gosplane SSSR. (Problems of Planning Perfection and Applying Economic Mathematical Methods in Transport. Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). Moscow: Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). 1979; No. 69: 151–159 [in Russian].

    Google Scholar 

  143. Vasil’eva, E. M., Levit, V. Yu., and Livshitz, V. N. Choosing the time path for developing a main-line transportation network. Matekon. Fall, 1980; 17, No. 1: 81–106.

    Google Scholar 

  144. Livshitz, V. N. Vybor Optimal’nykh Reschenii v Techniko-Ekonomicheskikh Raschetakh (Optimum Solutions Choice in Technical-Economic Calculations). Moscow: Ekonomika, 1971 [in Russian].

    Google Scholar 

  145. Pozamantir, E. I. “On one dynamic model of optimal planning of a transportation network development.” In Trudy IKTP pri Gosplane SSSR ( Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). Moscow: Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). 1974; No. 46: 161–183 [in Russian].

    Google Scholar 

  146. Vasil’eva, E. M., Levit, V. Yu., and Livshitz, V. N. Nelineinye Transportnye Zadachi na Seti (Nonlinear Transportation Problems on Networks). Moscow: Finansy i statistika, 1981 [in Russian].

    Google Scholar 

  147. Levit, V. Yu., and Livshitz, V. N. Nelineinye Setevye Transportnye Zadachi (Nonlinear Network Transportation Problems). Moscow: Transport, 1972 [in Russian].

    Google Scholar 

  148. Orlin, J. B. Minimum convex cost dynamic network flows. Mathematics of Operations Research. 1984; 9, No. 2: 190–207.

    Article  MathSciNet  MATH  Google Scholar 

  149. Belen’kii, A. S., and Levner, E. V. Scheduling models and methods in optimal freight transportation planning. Automation and Remote Control. 1989; 50, No. 1: 1–56.

    MathSciNet  Google Scholar 

  150. Belen’kii, A. S. Matematicheskie Modeli Optimal’nogo Planirovanija v Transportnykh Sistemakh. Itogi Nauki i Tekhniki. Seria Organizatzia Upravlenia Transportom. (Mathematical Models of Optimum Planning in Transportation Systems. Frontiers of Science and Technology. Series Organization of Transport Management). Moscow: VINITI, 7, 1988 [in Russian].

    Google Scholar 

  151. Belen’kii, A. S. Metody Optimal’nogo Planirovanija na Transporte (Transport Optimum Planning Methods). Moscow: Znanie, 1988 [in Russian].

    Google Scholar 

  152. Belen’kii, A. S. “Mathematical models and methods of discrete optimization in freight conveyance optimum planning problems.” In Diskretnaja Optimizatzija i Kompjutery. III Vsesojuznaja Schkola g. Taschtagol. Tezisy Dokladov (Discrete Optimization and Computers. III All- Union Conference. Abstracts of papers.). Moscow: Izd. TsEMI AN SSSR (Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1987; 81–89 [in Russian].

    Google Scholar 

  153. Shkurba, E. V., and Zinder, Yu. A. “Scheduling theory.” In Matematicheskaja Entziklopedija (Mathematical Encyclopedia). Moscow: Sovetskaya Entsiklopedija, 1984; 4: 870–872 [in Russian].

    Google Scholar 

  154. Balas, E. An additive algorithm for solving linear programs with zero-one variables. Operations Research. 1965; 13, No. 4: 517–546.

    Article  MathSciNet  Google Scholar 

  155. Mikhalevich, V. S., and Shor, N. Z. “Method of sequential analysis of variants in solving variational problems of control, planning, and designing.” In Tezisy Dokladov IV Vsesojuznogo Matematicheskogo S’ezda (IV All-Union Mathematical Congress. Abstracts of Papers). Moscow, 1961; 91 [in Russian].

    Google Scholar 

  156. Emelichev, V. A. Problems of discrete optimization. Soviet Physics Doklady. 1970; 15, No. 6: 533–534.

    MathSciNet  MATH  Google Scholar 

  157. Cherenin, V. P. “Solving some optimum planning combinatorial problems by the sequential calculation method.” In Nauchno-Metodicheskie Materialy Ekonomiko-Matematicheskogo Seminara Laboratorii Teorii EkonomikoMatematicheskikh Metodov AN SSSR (Scientific-Methodological Materials of the Economic-Mathematical Seminar of the Economic-Mathematical Methods Laboratory of the USSR Academy of Sciences). Moscow: Izd. VTz AN SSSR (Computer Center, USSR Academy of Sciences ), 1962; No. 2: 49–59 [in Russian].

    Google Scholar 

  158. Bruno, J. L., Coffman, E. G. Jr., Graham, R. L., Kohler, W. H., Sethi, R., Stieglitz, K., and Ullman, J. D. Computer and Job-Shop Scheduling Theory. New York: John Wiley and Sons Publ. Co., 1976.

    Google Scholar 

  159. Levner, E. V. Optimal planning of parts’ machining on a number of machines. Automation and Remote Control. 1969; No. 12: 1972–1978.

    MathSciNet  Google Scholar 

  160. Johnson, S. M. Optimal two-and three-stage production schedules with set up times included. Naval Research Logistics Quarterly. 1954; No. 1: 61–68.

    Article  Google Scholar 

  161. Vengerova, I. V., and Finkel’stein, Yu. Yu. To the branch-and-bound method efficiency. Ekonomika i matematicheskie metody. 1975; XI, No. 1: 186–193 [in Russian].

    MathSciNet  Google Scholar 

  162. Finkel’stein, Yu. Yu. Priblizhennye Metody i Prikladnye Zadachi Diskretnogo Programmirovanija (Approximate Methods and Applied Problems of Discrete Programming). Moscow: Nauka, 1976 [in Russian].

    Google Scholar 

  163. Sebastian, H.-J. Optimierung and optimale Steuerung eines allgemeinen Transport-Umschlag and Lagerhaltungsprozesses. (Teil 2). Routing Probleme mit Zeitintervall-Beschrankungen. Wissenschaftliche Zeitschrift. Technische Hochschule. Leipzig, 1986; 10, No. 4: 193–202.

    MATH  Google Scholar 

  164. Ryan, D. M., and Foster B. A. “An integer programming approach to scheduling.” In Computer Scheduling of Public Transportation. Urban Passenger Vehicle and Crew Scheduling. North-Holland, Amsterdam, 1981: 269–280.

    Google Scholar 

  165. Fischetti, M., and Toth, P. Procedure di bounding e di dominanza per problemi di offimizzazione combinatoria. Ricerca Operativa. 1987; 17, No. 42: 61–101.

    Google Scholar 

  166. Sukharev, A. G., Timokhov, A. V., and Fedorov, V. V. Kurs Metodov Optimizatzii (A Course on Optimization Methods). Moscow: Nauka, 1986 [in Russian].

    Google Scholar 

  167. Bellman, R. Mathematical aspects of scheduling theory. SIAM Journal. 1956; 4, No. 3: 168–205.

    Article  MATH  Google Scholar 

  168. Zinder, Ya. A. “Priority solvability of one class of ordering problems.” In Vo-prosy Sozdanija Avtomatizirovannykh Sistem Upravlenija (Problems of Designing Computer Aided Systems). Kiev: Izd. IK AN UkSSR (Institute of Cybernetics, Ukrainian Academy of Sciences ), 1976; 52–57 [in Russian].

    Google Scholar 

  169. Korbut, A. A., and Finkel’stein, Yu. Yu. Diskretnoe Programmirovanie (Discrete Programming). Moscow: Nauka, 1969 [in Russian].

    Google Scholar 

  170. Bellman, R. E., and Dreifus, S. E. Applied Dynamic Programming Problems. Princeton, NJ: Princeton University Press, 1962.

    Google Scholar 

  171. Lusicic, B. “Scheduling of new trains into the existing timetable with the minimization of additional railway power consumption costs.” In International Association of Science and Technology for Development, Modelling, Identification, and Control. 3rd International Symposium. Papers. Innsbruck, Febr. 14–17, 1984. Anaheim., Calif., e.a., 36–39.

    Google Scholar 

  172. Tanayev, V. S., and Shkurba, V. V. Vvedenie v Teoriju Raspisanii (Introduction to the Scheduling Theory). Moscow: Nauka, 1975 [in Russian].

    Google Scholar 

  173. Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of scheduling. Reading, Mass.: Adisson-Wesley Pub. Co., 1967.

    MATH  Google Scholar 

  174. Giffler, B., Thompson, D., and Van-Nesse, V. “Calculation experience using linear and Monte-Carlo algorithms for solving manufacturing timetable planning problems.” In Kalendarnoe Planirovanie (Timetable planning). Moscow: Progress, 1966; 42–61 [in Russian].

    Google Scholar 

  175. Manne, A. S. On the job-shop scheduling problem. Operations Research. 1960; 8, No. 2: 219–223.

    Article  MathSciNet  Google Scholar 

  176. Bowman, E. H. The schedule-sequencing problem. Operations Research. 1959; 7, No. 5: 621–624.

    Article  MATH  Google Scholar 

  177. Dantzig, G. B. A machine-job scheduling model. Management Science. 1960; 6, No. 2: 191–196.

    Article  Google Scholar 

  178. Kofman, A., and Debasey, G. Application aux Programms de Production et d’Etudes de la Methode P.E.R.T. et de ses Variantes. Dunod, Paris, 1964.

    Google Scholar 

  179. Bunkin, V. A., Kolev, D., Kuritskii, B. Ya., et al. “Models of network planning and control with regard to resources.” In Modeli Setevogo Planirovanija i Upravlenija s Uchetom Resursov. Spravochnik po Optimizatzionnym Zadacham v ASU (A Handbook Manual on Optimization Problems in Computer Aided Systems). Leningrad: Mashinostroenie, 1984; 161–175 [in Russian].

    Google Scholar 

  180. Pleshchinskii, A. S. “Models and methods of solving network production planning and control problems.” In Ekonomiko-Matematicheskie Modeli v Sisteme Upravlenija Predprijatijami (Economic-Mathematical Models for Enterprise Control System). Moscow: Nauka, 1983; 303–356 [in Russian].

    Google Scholar 

  181. Tanaev, V. S., Gordon, V. S., and Shafranskyi, Y. M. Scheduling Theory. Single-Stage Systems. Series Mathematics and its Applications. Kluwer Academic Publishers, 1994.

    Google Scholar 

  182. Lebedev, S. S., and Fridman, A. A. “New trends in discrete programming.” In Matematicheskii Apparat Ekonomicheskogo Modelirovanija (Mathematical Tools of Economic Modelling). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1983; 136–158 [in Russian].

    Google Scholar 

  183. Levner, E. V. “Network approach to scheduling theory problems.” In Issledovanija po Diskretnoi Matematike (Studies in Discrete Mathematics). Moscow: Nauka, 1973; 135–150 [in Russian].

    Google Scholar 

  184. Nabeshima, I. Sequencing on two machines with start lag and stop lag. Journal of the Operations Research Society of Japan. 1963; 5, No. 3: 97–101.

    Google Scholar 

  185. Davydov, E. G. Igry, Grafy, Resursy (Games, Graphs, Resources). Moscow: Radio i svyaz’, 1981 [in Russian].

    Google Scholar 

  186. Gens, G. V., and Levner, E. V. Effektivnye Priblizhennye Algoritmy dlja Kombinatornykh Zadach (Effective Approximate Algorithms for Combinatorial Problems). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1981 [in Russian].

    Google Scholar 

  187. Magazine, M. J., Nemhauser, G. L., and Trotter, L. E. When the greedy solution solves a class of knapsack problems. Operations Research. 1975; 23, No. 2: 207217.

    Google Scholar 

  188. Kannan, R., and Korte, B. Approximative Combinatorial Algorithms. Bonn: University of Bonn, 1978; Report No. 78107.

    Google Scholar 

  189. Levner, E. V. Teorija Raspisanii v Ekonomicheskikh Sistemakh (Nekotorie Matematicheskie Voprosy) (Scheduling Theory in Economic Systems (Some Mathematical Aspects)). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1977 [in Russian].

    Google Scholar 

  190. Mikhalevich, V. S., and Kuksa, A. I. Metody Posledovatel’noi Optimizatzii (v Diskretnykh Setevykh Zadachakh Optimal’nigo Raspredelenija Resursov) (Sequential Optimization Methods (in Discrete Network Problems of Optimum Resources Allocation)). Moscow: Nauka, 1983 [in Russian].

    Google Scholar 

  191. Sergienko, I. V., Lebedeva, T. T., and Roschin, V. A. Priblizhennye Metody Reschenija Zadach Optimizatzii (Approximation Methods for Solving Optimization Problems). Kiev: Naukova dumka, 1980 [in Russian].

    Google Scholar 

  192. Levin, M. Sh. Primenenie Optimizatzionnykh Kombinatornykh Modelei v Avtomatizirovannykh Sistemakh. Obzornaja Informatzija. Tekhnologija, Oborudovanie, Organizatzija i Ekonomika Maschinostroenija. Serija C-9. Avtomatizirovannye Sistemy Proektirovanija i Upravlenija (Application of Optimization Combinatorial Models in Computer Aided Systems. Review. Technology, Equipment, Organization and Economics of Machine-Building. Series C-9. Computer Aided Systems of Projecting and Control.). Moscow: Izd. VNIITEMR, 1986; No. 1 [in Russian].

    Google Scholar 

  193. Smith, W. E. Various optimizers for single-state production. Naval Research Logistics Quarterly. 1956; 3, No. 1–2: 59–66.

    Article  MathSciNet  Google Scholar 

  194. Gordon, V. S., and Shafranskii, Ya. M. Optimum ordering with sequential-parallel priority constraints. Doklady Akademii Nauk BSSR. 1978; No. 3: 244–247 [in Russian].

    Google Scholar 

  195. Garey, M. R., and Johnson, D. S. Computers and Intractability: a Guide to the Theory of NP-completeness. San Francisco: W. H. Freeman, 1979.

    MATH  Google Scholar 

  196. Fisher, M. L. “Optimal solution of scheduling problems using Lagrange multipliers: part II.” In Lecture Notes in Economics and Mathematical Systems. 1973; 86: 294–318.

    Article  Google Scholar 

  197. Demin, V. K., and Chebotarev, A. S. Optimum servicing of a determinate flow of requirements. I. Lower estimate of the problem. Engineering Cybernetics. 1976; 14, No. 4: 74–80.

    Google Scholar 

  198. Levner, E. V., and Gens, G. V. Diskretnye Optirnizatzionnye Zadachi i Effektivnye Priblizhennye Algorttmy (Discrete Optimization Problems and Efficient Approximation Algorithms. Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1978 [in Russian].

    Google Scholar 

  199. Belov, I. S., and Stolin, Ya. N. “An algorithm in a one-route timetable planning problem.” In Matematicheskaja Ekonomika i Funktzional’nyi Analiz (Mathematical Economics and Functional Analysis). Moscow: Nauka, 1974; 248–257 [in Russian].

    Google Scholar 

  200. Sevastyanov, S. V. “Geometry in the scheduling theory.” In Modeli i Metody Optimizatzii. Trudy Instituta Matematiki SO AN SSSR (Optimization Models and Methods. Collected Works. Institute of Mathematics, Siberian Division of the USSR Academy of Sciences). Novosibirsk: Nauka, 1989; 10, 213–260 [in Russian].

    Google Scholar 

  201. Gens, G. V., and Levner, E. V. Discrete optimization problems and efficient approximation algorithms (a review). Engineering Cybernetics. 1979; No. 6: 111.

    Google Scholar 

  202. Levin, M. Sh. Deterministic planning problems with identical processors and simultaneous appearance of orders. Engineering Cybernetics. 1982; 20, No. 4: 49–56.

    MATH  Google Scholar 

  203. Coffman, E. G., Garey, M. R., and Johnson, D. S. “Approximation algorithms for bin-packing—an updated survey.” In Algorithm Design for Computer System Design. CISM Causes and Lectures. Wien-New York: CISM Causes and Lectures. 1984; 284: 49–106.

    Google Scholar 

  204. Gens, G. V., and Levner, E. V. “Dichotomous search for suboptimal solutions for knapsack-type problems.” In Matematicheskaja Ekonomika i Ekstremal’nye Zadachi (Mathematical Economics and Extreme Problems). Moscow: Nauka, 1984; 138–150 [in Russian].

    Google Scholar 

  205. Lawler, E. L. Fast approximation algorithms for knapsack problems. Mathematics of Operations Research. 1979; 4, No. 4: 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  206. Levin, M. Sh., and Levner, E. V. An effective solution to the Bellman-Johnson problem on a tree-like network. Automation and Remote Control. 1978; 39, No. 10: 1493–1496.

    MathSciNet  Google Scholar 

  207. Vichislitel’nye Maschiny i Teorija Raspisanii. Redaktor E. G.Kofman (Computers and Scheduling Theory. Kofman, E. G. ed.). Moscow: Nauka, 1983 [in Russian].

    Google Scholar 

  208. Yudin, D. B., and Yudin, A. D. Chislo i Mysl’. Matematiki Izmerjajut Slozhnost’ (Number and Thought. Mathematicians Measure Complexity). Moscow: Znanie, 1985; No..8 [in Russian].

    Google Scholar 

  209. Karmanov, V. G. Matematicheskoe Programmirovanie (Mathematical Programming). Moscow: Nauka, 1980 [in Russian].

    MATH  Google Scholar 

  210. Saradzishvili, Ts. I., Gabisoniya, G. V., and Kukhtashvili, K. V. “One problem of timetable planning with vector indices of quality.” In Trudy Instituta Sistem Upravlenija AN GSSR (Collected Works. Institute of Control Systems, Georgia Academy of Sciences). Tbilisi: Metzniereba, 1987; 25, No. 1: 156–162 [in Russian].

    Google Scholar 

  211. Gimadi, E. H. “On some mathematical models and methods of large-scale projects planning.” In Modeli i Metody Optimizatzii. Trudy Instituta Matematiki SO AN SSSR (Optimization Models and Methods. Collected Works. Institute of Mathematics, Siberian Division of the USSR Academy of Sciences). Novosibirsk: Nauka, 1989; 10: 89–115 [in Russian].

    Google Scholar 

  212. Martello, S., and Toth, P. A new algorithm for the 0–1 knapsack problem. Management Science. 1988; 34, No. 5: 633–644.

    Article  MathSciNet  MATH  Google Scholar 

  213. Medvedovskaya, I. G. “Dual methods of solving the multidimensional knapsack problem.” In Zadachi Diskretnoi Optimizatzii i Metody ikh Reschenija (Discrete Optimization Problems and Methods for their Solving). Moscow: TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1987; 27–46 [in Russian].

    Google Scholar 

  214. Kokhova, S. V., and Kosorukov, O. A. A class of dynamic problems of optimal resource distribution on networks. Moscow University Computational Mathematics and Cybernetics. 1988; No. 3: 36–44.

    MathSciNet  Google Scholar 

  215. Grigor’yeva, N. S., Latypov, I. Sh., and Romanovskiy, I. V. Cyclic problems of scheduling theory. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1988; 27, No. 2: 34–40.

    MathSciNet  Google Scholar 

  216. Cheng, T. C. E. Optimal constant due-date assignment and sequencing. International Journal of Systems Science. 1988; 19, No. 7: 1351–1354.

    MathSciNet  MATH  Google Scholar 

  217. van de Velde, S. L. Minimizing total completion time in the two-machine flow stop by Lagrangian relaxation. Report. Center for Mathematics and Computer Science. 1988; OS OS-R8808; 1–8.

    Google Scholar 

  218. Golshtein, E. G., and Yudin, D. B. Zadachi Lineinogo Programmirovanija Transportnogo Tipa (The Transportation Problem). Moscow: Nauka, 1969 [in Russian].

    Google Scholar 

  219. Abramov, M. M., and Kapustin, V. F. Matematicheskoe Programmirovanie (Mathematical Programming). Leningrad: Izd. LGU (Leningrad State University ), 1981 [in Russian].

    MATH  Google Scholar 

  220. Shafaat, A, and Goyal, S. K. Resolution of degeneracy in transportation problems. Journal Operational Research Society. 1988; 39, No 4: 411–413.

    MATH  Google Scholar 

  221. Saxena, P. K. Shipping cost: completion-date tradeoffs in fractional transportation problems with penalty cost. Ricerca Operativa. 1985; 15, No. 35: 3–15.

    Google Scholar 

  222. Glickman T. S., and Berger P. D. Cost/completion-date tradeoffs in the transportation problem. Operations Research. 1977; 25, No. 1: 163–168.

    Article  MATH  Google Scholar 

  223. Mason, F., and Sorato, A. “Su un problema di transporto con obiettivo bottleneck.” Atti delle Giornate di Lavoro della Associazione Italiana di Ricerca Operativa, (AIRO), Venezia, 30 sett.-2 ott. 1985. Bologna, 1985; 121–141.

    Google Scholar 

  224. Hirche, J. Optimalitat der Nordwesteckenlosung beim Transportproblem mit monoton kreuz-differenten Kosten. Wissenschaftliche Zeitschrift. Martin-LutherUniversitaet (Hall-Wittenberg) Mathematisch-Naturwissenschaftliche. 1985; 34, No. 4: 59–62.

    MathSciNet  MATH  Google Scholar 

  225. Evans, J. R. The factored transportation problem. Management Science. 1984; 30, No. 8: 1021–1024.

    Article  MathSciNet  MATH  Google Scholar 

  226. Intrator, J. Experimental comparisons of codes for long transportation problems. Computers and Operations Research. 1985; 12, No. 4: 391–394.

    Article  MATH  Google Scholar 

  227. Mazurov, V. D. “Committee solutions of inconsistent optimization and classification problems.” In Materialy Vsesojuznogo Seminara po Diskretnoj Matematike i ce Prilozhenijam. Janvar’ 31–Fevral’ 2, 1984 (Papers of the All-Union Seminar on Discrete Mathematics and its Application. January 31–February 2, 1984). Moscow: Izd. MGU (Moscow State University), 1986; 23–28 [in Russian].

    Google Scholar 

  228. Belen’kii, A. S. Matematicheskie Modeli Optimal’nigo Planirovanija v Transportnykh Sistemakh. Itogi Nauki i Tekhniki. Organizatzija Upravlenija Transportom (Mathematical Models of Optimum Planning in Transportation Systems. Series: Frontiers of Science and Technology. Organization of Transport Management). Moscow: Izd. VINITI, 7, 1988 [in Russian].

    Google Scholar 

  229. Shevchenko, A. N. “Using the dynamic programming method and duality theory for the multi-index transportation problem.” In Algoritmy Reschenija Setevykh Zadach (Network Problems Solution Algorithms). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1984; 45–58 [in Russian].

    Google Scholar 

  230. Ryang, So Yon. A solution method of the fractional n-index transportation problem with pass capacity. Cyxak, Mathematics. 1987; No. 21: 21–28.

    MathSciNet  Google Scholar 

  231. Gambarov, L. A. “Decomposition of multi-index problems of placing orders for production.” In Teorija Optimal’nykh Reschenii (Optimum Solution Theory). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1987; 4–9 [in Russian].

    Google Scholar 

  232. Gambarov, L. A. “Using the possible directions method for solving multi-index transportation linear programming problems.” In Primenenie Matematicheskikh Metodov pri Optimizatzii Slozhnykh Ekonomicheskikh Sistem (Using Mathematical Methods for Complex Economic Systems Optimization). Kiev: Izd. IK AN UkSSR (Institute of Cybernetics, Ukrainian Academy of Sciences ), 1984; 20–26 [in Russian].

    Google Scholar 

  233. Das, C., and Patel, G. A variant of the solid transportation problem with mixed constraints. Ricerca Operativa. 1987; 17, No. 42: 103–130.

    Google Scholar 

  234. Cabot A. V., and Erenguc S.S. Some branch-and-bound procedures for fixed-cost transportation problems. Naval Research Logistic Quarterly. 1984; 31, No. 1: 145–154.

    Article  MathSciNet  MATH  Google Scholar 

  235. Schaffer J. R., and O’Leary, D. E. Use of penalties in a branch and bound procedure for the fixed charge transportation problem. European Journal of Operational Research. 1989; 43, No. 3: 305–312.

    Article  MATH  Google Scholar 

  236. Holmberg, K., and Jornsten, K. Cross decomposition applied to the stochastic transportation problem. European Journal of Operational Research. 1984; 17, No. 3: 361–368.

    Article  MathSciNet  MATH  Google Scholar 

  237. Korchemkin, M. B. Decomposition and aggregation for solving transportation and transshipment problems. Modelling, Simulation, and Control. 1986; No. 2: 25–35.

    Google Scholar 

  238. Matveenko, V. D. A combinatorial approach to the problem of solvability of the three-index transportation problem. Mathematical Notes of the Academy of Sciences of the USSR. 1986; 40, No. 2: 638–643.

    MathSciNet  MATH  Google Scholar 

  239. Gambarov, L. A. Coordination of systems of transportation planning and on-line control of plans realization processes. Vestnik Khar’kovskogo Polytekhnicheskogo Instituta. Khar’kov, 1987; No. 240: 68–70 [in Russian].

    Google Scholar 

  240. Kravtsov, M. K., and Miksjuk, S. F. Ob Uslovijakh Razreshimosti ChastichnoTzelochislennykh Transportnykh Zadach (On solubility conditions of partially integer transportation problems). Izvestiya Akademii Nauk BSSR, Seriya fiz.-mat. nauk. Minsk, 1986; Unpublished manuscript, VINITI, 19.05.86, No. 3590-B [in Russian].

    Google Scholar 

  241. Pelikan, J. Dopravni problem s kontejnerovou prepravou. Ekonomiko-Mathematichesky Obzor. 1984; 20, No. 4: 434–442.

    MathSciNet  Google Scholar 

  242. Shirokov, L. A. “A matrix algorithm with variable structure for optimum control of mutual delivery balance at the branch enterprises.” In Prikladnoe i Sistemnoe Programmirovanie (Applied and System Programming). Moscow: Izd. MIREA ( Moscow Institute of Radio Engineering, Electronics, and Automation ), 1986; 189–199 [in Russian].

    Google Scholar 

  243. Verma, V., Puri, M. C. Constrained transportation problem with upper and lower bounds on row-availabilities and destination requirements. Cahiers. Centre d’Etudes de Recherche Operationnelle. 1988; 30, No. 23: 177–189.

    MathSciNet  MATH  Google Scholar 

  244. Potapova, L. I. “On the transportation problem solution procedure according to the time criterion.” In Algoritmy Reschenija Setevykh Zadach (Network Problems Solution Algorithms). Moscow: Nauka, 1984; 33–41 [in Russian].

    Google Scholar 

  245. Alekseyev, A. O. “A time-criterion transportation problem with a limited number of transportation means.” In Matematicheskie Metody Optimizatzii i Upravlenija v Slozhnykh Sistemakh (Mathematical Methods of Optimization and Control in Complex Systems). Kalinin Izd. Kalinin GU (Kalinin State University), 1984; 60–65 [in Russian].

    Google Scholar 

  246. Khanna, S. Multi-index time transportation problem. Ricerca Operativa. 1983; 13, No. 28: 27–35.

    Google Scholar 

  247. Golshtein, E. G., and Yudin, D. B, D. B. “On a class of problems in the planning of national economy.” In Problems of Cybernetics. Oxford, New York: Pergamon Press, 1964; 5; 226–252.

    Google Scholar 

  248. Shakhidi, A. A. On one method of solving a production-transportation problem. Izvestiya Akademii Nauk USSR. Seriya Tekhnicheskikh Nauk. 1985; No. 3: 5–6 [in Russian].

    Google Scholar 

  249. Neralich, L., Sirovitsa, L., Skok, S., and Hunet, D. Production-transportation problem solution by the Benders decomposition method. Economika i matematicheskie metody. 1984; XX, No. 6: 1140–1143 [in Russian].

    MathSciNet  Google Scholar 

  250. Khan, A. M. Solid-waste disposal with intermediate transfer stations: an application of the fixed-change location problem. Journal Operational Research Society. 1987; 38, No. 1: 31–37.

    MATH  Google Scholar 

  251. Yudin, D. V., and Yudin, A. D. Ekstremalnye Modeli v Ekonomike (Extreme Models in Economics). Moscow: Ekonomika, 1979 [in Russian].

    Google Scholar 

  252. Akulich, F. E. Dekompozitzionnyi Algoritm Reshenija Zadachi o Maksimal’nom Potoke v Seti (A Decomposition Algorithm for Solving the Maximum Network Flow Problem). Izvestiya Akademii Nauk BSSR. Seriya fiz.-mat. nauk. Minsk, 1985; Unpublished manuscript, VINITI, 09.08.85, No. 5888–85 dep [in Russian].

    Google Scholar 

  253. Akulich, F. E. Ob Odnoi Parametricheskoi Transportnoi Zadache na Uzkie Mesta s Ogranichennymi Propusknymi Sposobnostjami Kommunikatzii (On One Parametric Bottleneck Transportation Problem with Limited Capacities of Communications). Izd. IM AN BSSR (Institute of Mathematics, Belorussia Academy of Sciences), Preprint, 1987; No. 10/280 [in Russian].

    Google Scholar 

  254. Stancu, M. I. M., and Tigan, S. The stochastic bottleneck transportation problem. L’Analyse Numerique et la Theorie de l’Approximation. 1985; 14, No. 2: 153–158.

    MATH  Google Scholar 

  255. Daduna, I. “Mengenabhangige transportzeiten bei Bottleneck–Transportproblemen.” In VII Symposium on Operations Research, Hochschule, St. Gallen. Aug. 19–21, 1982. Proc. Sekt. 1–3, Konigstein/Ts., 1983; 189–200.

    Google Scholar 

  256. Voolis, V. I., and Sherman, Yu. S. Decomposition method for solving large transportation problems. Ekonomika i matematicheskie metody. 1985; XXI, No. 2: 304–314 [in Russian].

    Google Scholar 

  257. Avram-Nitchi, R. “Some remarks about using list management in transportation problem.” In Preprint: Babes-Bolyai University Faculty Mathematics Research Seminar. 1987; No. 6: 79–84.

    MathSciNet  Google Scholar 

  258. Avrav-Nitchi, R. “The solving of cost transportation problem (CTP) using primal algorithms based on triple lists.” In Preprint: Babes-Bolyai University Faculty Mathematics Research Seminar. 1988; No. 6: 119–126.

    Google Scholar 

  259. Lovetskii, S. E., and Melamed, I. I. “Primal simplex method for maximum dynamic flow search in a transportation network.” In Trudy MILT (Collected Works of Moscow Institute of Transportation Engineers). Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), 1988; 75–85 [in Russian].

    Google Scholar 

  260. Kim, K. V., and Cherkasskii, B. V. “A program for solving multicommodity transportation problem.” In Algoritmy Reschenija Setevykh Zadach. Sbornik Trudov (Network Problems Solution Algorithms. Collected works). Moscow: Izd. TsEMI AN SSSR (Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1984; 6–24 [in Russian].

    Google Scholar 

  261. Kim, K. V. An inverse matrix algorithm for solving a transportation problem with additional constraints. Ekonomika i matematicheskie metody. 1967; III: 588–592 [in Russian].

    Google Scholar 

  262. Bradley, G. H., Brown, G. G., and Graves, G. W. Design and implementation of large scale primal transshipment algorithms. Management Science. 1977; 24, No. 1: 1–34.

    Article  MATH  Google Scholar 

  263. Pilipchuk, L. A. “A solution algorithm for a generalized transportation problem with additional constraints.” In Konstruktivnaja Teorija Ekstremal’nykh Zadach (Constructive Theory of Extreme Problems). Minsk: Izd. BGU (Belorussia State University), 1984; 35–44 [in Russian].

    Google Scholar 

  264. Finke, G., and Rock, H. “A primal algorithm for a class of minimax network flow problems.” In VII Symposium on Operations Research, Hochschule, St. Gallen, Aug$119–21, 1982. Proc. Sekt. 1–3. Konigstein/Ts, 1983; 221–232.

    Google Scholar 

  265. Gambarov, L. A. On one decomposition method of a multicommodity transportation problem with intermediate nodes. Ekonomika i matematicheskie metody. 1987; 23, No. 1: 165–168 [in Russian].

    MathSciNet  Google Scholar 

  266. Schmidt, G. A fertilizer transportation problem. Zietschrift fuer Operations Research. 1986; 30, No. 5: 135–145.

    Google Scholar 

  267. Schreier, H. Eine Variante zur Uberprufung eines Losbarkeitskriteriums fur das bilansierte Mehrsortentransportproblem. Seminarberichte Humbolt-Universitat, Berlin, Sektion Mathematik. 1986; No. 85: 108–117.

    MathSciNet  MATH  Google Scholar 

  268. Pilipchuk, L. A. Zadacha Optimizatzii Neodnorodnogo (Dvukhproductovogo) Potoka na Seti s Vsaimosvjazju Razlichnykh Productov (An optimization problem of a nonhomogeneous (two-commodity) flow on a network with various commodities relations). Vestnik Belorusskogo Universiteta. Seriya 1: Fizika, Matematika, Mekhanika. Minsk, 1988; Unpublished manuscript, VINITI, 13.01.88, No. 206B88 [in Russian].

    Google Scholar 

  269. Ohuchi, A., and Kaji, I. Lagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costs. Networks. 1984; 14, No. 4: 515–530.

    Article  MathSciNet  MATH  Google Scholar 

  270. Movshovich, S. M. Sequential projections and coordinatewise minimization in the solution of convex programming problems. Matekon. Spring, 1976; 13, No. 3: 86–96.

    Google Scholar 

  271. Pilipchuk, L. A. On dual methods of two-commodity transportation problem solution. Vestnik Belorusskogo Universiteta. Seriya 1: Fizika, Matematika, Mekhanika. 1984; No. 3: 52–54 [in Russian].

    MathSciNet  Google Scholar 

  272. Rumchev, V. G., and Mateev, L. N. “Solving the dynamic transportation problem in network formulation by the time-extended network method.” In Godichnoe VUZ. Prilozhenie matematiki (Annual Report of Universities. Applications of Mathematics). 1983/1984; 19 No. 3: 149–161 [in Russian].

    Google Scholar 

  273. Lovetskii, S. E., and Melamed, I. I. Dynamic network flows. Automation and Remote Control. 1987; 48, No. 11: 1417–1434.

    MathSciNet  Google Scholar 

  274. Aronson, J. E., Morton, T. E., and Thompson, G. L. A forward simplex method for staircase linear programs Management Science. 1985; 31, No. 6: 664–679.

    Article  MathSciNet  MATH  Google Scholar 

  275. Kozlov, P. A., Milovidov, S. P., and Popov, A. T. Optimization of technological transport work in industrial systems. Ekonomika i matematicheskie metody. 1986; XXII, No. 4: 697–703 [in Russian].

    Google Scholar 

  276. Batishchev, D. I., and Kogan, D. I. Transportation problems with linear estimates of participants. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1987; 25, No. 3: 93–99.

    MathSciNet  MATH  Google Scholar 

  277. Yemelyanov, S. V., Borisov, V. I. Malevich, A. A., and Cherkashin, A. M. Modeli i Metody Vektornoi Optimizatzii. Itogi Nauki i Tekhniki. Seriya Tekhnicheskaya Kibernetika (Models and Methods of Vector Optimization. Frontiers of Science and Technology. Series Engineering Cybernetics). Moscow: VINITI, 1973; 5 [in Russian].

    Google Scholar 

  278. Thompson, G. L. Solution of constrained generalized transportation problems using the pivot and probe algorithm. Computers and Operations Research. 1986; 13, No. 1: 1–9.

    Article  MATH  Google Scholar 

  279. Zenios, S. A., and Mulvey, J. M. A distributed algorithm for convex network optimization problems. Parallel Computing. 1988; 6, No. 1: 45–56.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Belenky, A.S. (1998). Transportation-Oriented Optimization. In: Operations Research in Transportation Systems. Applied Optimization, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6075-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6075-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4803-8

  • Online ISBN: 978-1-4757-6075-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics