Transportation-Oriented Optimization

  • Alexander S. Belenky
Part of the Applied Optimization book series (APOP, volume 20)

Abstract

Let G(V, E) be a network whose vertices (nodes), origins and destinations of freights, form a set V, arcs connecting these vertices form a set E, and arcs from the set E represent transportation communication lines. An ordered sequence of directed arcs from E, where the end of any arc except for the last one is the beginning of another (the only) arc, and the beginning of any arc except for the first one is the end of another (the only) arc, is called a route. Here, the beginning of the first arc (vertex) and the end of the last arc (vertex) of a route are called the origin and the end of the route, respectively. If the origin and the end of a route coincide, the route is called a closed route or a cycle [1].

Keywords

Schedule Problem Assignment Problem Travel Salesman Problem Transportation Problem Goal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lovetskii, S. E., Melamed, I. I., and Plotinskii, Yu. M. Modeli i Metody Reschenia Zadach Marschrutizatzii na Transportnoi Seti (Models and Methods of Solving Routing Problems on Transportation Network). Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management). Moscow: VINITI, 1982; 3, [in Russian].Google Scholar
  2. [2]
    Aven, O. I, Lovetskii, S. E., and Moiseenko, G. E. Optimizatzia Transportnykh Potokov (Optimization of Transportation Flows). Moscow: Nauka, 1985 [in Russian].Google Scholar
  3. [3]
    Burkov, V. N., and Rubinstein, M. I. “Algorithms for Solving Freight Transportation Problems.” In Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management ). Moscow: Organization of Transportation Management ). 1984; 4: 3–55 [in Russian].Google Scholar
  4. [4]
    Bellman, R. E., and Dreyfus, S. E. Applied Dynamic Programming. Princeton, NJ: Princeton University Press, 1962.MATHGoogle Scholar
  5. [5]
    Hu, T. Integer Programming and Network Flows. Reading, Mass.: AdissonWesley Pub. Co., 1969.MATHGoogle Scholar
  6. [6]
    Frumkin, M. A. Slozhnost’ Diskretnykh Zadach (Complexity of Discrete Problems). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1981 [in Russian].Google Scholar
  7. [7]
    Plotinskii, Yu. M. Generalized delivery problem. Automation and Remote Control. 1973; 34, No. 6: 946–949.MATHGoogle Scholar
  8. [8]
    Melamed, I. I., and Plotinskii, Yu. M. Heuristic algorithm for the generalized delivery problem. Automation and Remote Control. 1979; 40, No. 12: 1845–1849.MATHGoogle Scholar
  9. [9]
    Borodin, V. V, Melamed, I. I., and Plotinskii, Yu. M. “Routing of container shipments by motor transport.” In Collected Works. Moscow: Izd. Institut Problem Upravlenia (Institute of Control Sciences, USSR Academy of Sciences ), 1979; No. 20: 23–27 [in Russian].Google Scholar
  10. [10]
    Orloff, C. F. A fundamental problem in vehicle routing. Networks. 1974; No. 4: 35–64.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Rao, M. R. A note on the multiple travelling salesmen problem. Operations Research. 1980; 28, No. 3: 628–632.MATHCrossRefGoogle Scholar
  12. [12]
    Melamed, I. I. “On the problem of several travelling salesmen.” In Collected Works. Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), 1981; No. 647: 72–79 [in Russian].Google Scholar
  13. [13]
    Frederickson, G. N., Hecht, M. S., and Kim, C. E. Approximation algorithms for some routing problems. SIAM Journal on Computing. 1978; 7, No. 2: 178–193.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Edmonds, J., and Johnson, E. L. Matching, Euler tours, and the Chinese postman. Mathematical Programming. 1973; No. 5: 88–124.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Kirzhner, V. N., and Rublinetskii, V. I. “About the procedure ”go to the nearest one“ in the travelling salesman problem.” In Collected Works. Khar’kov: Izd. KhFTINT (Khar’kov Phisics and Technology Institute of Low Temperatures), 1973; No. 4: 40–41 [in Russian].Google Scholar
  16. [16]
    Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karol, C. An algorithm for the travelling salesman problem. Operations Research. 1963; 11, No. 6: 972–989.MATHCrossRefGoogle Scholar
  17. [17]
    Finkel’stein, Yu. Yu. Priblizhennye Metody i Prikladnye Zadachi Diskretnogo Programmirovania (Approximate Methods and Applied Problems of Discrete Programming). Moscow: Nauka, 1976 [in Russian].Google Scholar
  18. [18]
    Carpaneto, G., and Toth, P. Some new branching and bounding criteria for the asymmetric travelling salesman problem. Management Science. 1980; 26, No. 7: 736–743.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Smith, T. H. C., and Thomson, G. L. A LIFO implicit enumeration search algorithm for the symmetric traveling salesman problem using Held and Karp’s 1-tree relaxation. Annals of Discrete Mathematics. 1977; 1: 479–493.CrossRefGoogle Scholar
  20. [20]
    Jonker, R., and Volgenant, T. Nonoptimal edges for the symmetric traveling salesman problem. Operations Research. 1984; 32, No. 4: 837–846.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Held, M., and Karp, R. Dynamic programming application to problems of ordering. Kiberneticheskii Sbornik. Moscow: Mir Publishers, 1964; No. 9: 202–212 [in Russian].Google Scholar
  22. [22]
    Miliotis, P. Integer programming approaches to the travelling salesman problem. Mathematical Programming. 1976; 10, No. 3: 367–378.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Volgenant, T., and Jonker, R. The symmetric travelling salesman problem and the edge exchanges in minimal 1-trees. European Journal of Operational Research. 1983; 12, No. 4: 394–403.MathSciNetMATHCrossRefGoogle Scholar
  24. [24).
    Jongens, K., and Volgenant, T. The symmetric clustered travelling salesman problem. European Journal of Operational Research. 1985; 19, No. 1: 68–75.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Kalantari, B., Hill, A. V., and Arora, S. R. An algorithm for the travelling salesman problem with pickup and delivery customers. European Journal of Operational Research. 1985; 22, No. 3: 377–386.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Sukharev, A. G., Timokhov, A. V., and Fedorov, V. V Kurs Metodov Optimizatzii (A Course on Optimization Methods). Moscow: Nauka, 1986 [in Russian].Google Scholar
  27. [27]
    Telemtaev, M. M. An algorithm for the travelling salesman problem. Izvestija Akadernii Nauk KSSR. Matematika-Fizika. 1986; No. 1: 40–43 [in Russian].Google Scholar
  28. [28]
    Kaspshitskaya, M. F., and Glushkova, V. V. Some questions of solving the travelling salesman problem. Kibernetika. Kiev, 1985; No. 5: 121–122 [in Russian].MathSciNetGoogle Scholar
  29. [29] Glushkova, V. V “One algorithm for solving the travelling salesman problem with moving objects.” In Metody Diskretnoi Optimizatzii i Effectivnaja Organizatzija Paketov Programm (Discrete Optimization Methods and Efficient Organization of Software Packages).
    Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1985; 35–39 [in Russian].Google Scholar
  30. [30]
    Glushkova, V. V. “Finding the lower bound of the goal functional for the travelling salesman problem with moving objects.” In Pakety Prikladnykh Programm i Chislennye Metody (Packages of Applied Programs and Numerical Methods). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1988; 30–34 [in Russian].Google Scholar
  31. [31]
    Matematicheskii Apparat Ekonomicheskogo Modelirovania (Mathematic Tools of Economic Modelling). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1983 [in Russian].Google Scholar
  32. [32]
    Balas, E., and Christofides, N. A restricted Lagrangean approach to the travelling salesman problem. Mathematical Programming. 1981; 21, No. 1: 19–46.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    Jeromin, B., and Korner, F. Sharp bounds for Karp’s “patching” -algorithm for the approximate solution of the travelling salesman problem. Optimization. 1986; 17, No. 1: 85–92.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Ukhina, N. V. “An effective heuristic algorithm for the travelling salesman problem solution.” In Matematicheskoe Modelirovanie i Avtomatizirovannye Sistemy v Sudostroenii ( Mathematical Modelling and Automated Systems in Shipbuilding ). Leningrad, 1986; 39–44 [in Russian].Google Scholar
  35. [35]
    Brunacci, F. A. A useful transform of standard input data for a classical NP-complete problem. European Journal of Operational Research. 1985; 19, No. 3: 390–396.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    Jeromin, B. and Korner, F. On the refinement of bounds of heuristic algorithms for the travelling salesman problem. Mathematical Programming. 1985; 32 No. 1: 114–117.Google Scholar
  37. [37]
    Sapko, A. V. “On solving a large-dimension travelling salesman problem.” In Proektirovanie i Razrabotka Paketov Prikladnykh Programm (Design and Development of Software Packages). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1987; 68–71 [in Russian].Google Scholar
  38. [38]
    Vasil’ev, Yu. S., Belobabov, V. V., and Mikhailichenko, V. M. Ob Odnom Podkhode k Rescheniju Zadachi Kommivojazhera (On One Approach to Solving the Travelling Salesman Problem). Alma-Ata: KazGU (Kazakhsky State University), 1985; Unpublished manuscript, Kazakhskiy NIITI 08.10.85 No.1066-KA. [in Russian].Google Scholar
  39. [39]
    Serdiukov, A. I. “Polynomial algorithms with estimates for the travelling salesman problem.” 30 Internationales Wissenschaftliches Kolloquium. Ilmenau, 2125 Oct., 1985, No. 5, Vortragsr. F. Ilmenau, 1985; 105–108.Google Scholar
  40. [40]
    Shelestov, A. A. K Voprosu o Reschenii Zadachi Kommivojazhera (On the Travelling Salesman Problem Solution). Tomsk: Izd. TIASUR (Tomskii Institut Avtomatizirovannikh System Upravleniya i radioelectroniki), 1985; Unpublished manuscript, VINITI 22.04.85 No. 2633–85 [in Russian].Google Scholar
  41. [41]
    Estreikh, I. V. “Decomposition algorithm for the travelling salesman problem solution.” In Maschinnye Metody Planirovanija Eksperimenta i Optirnizatzii Mnogofaktornikh Sistem (Computer Methods of Experiment Planning and Optimization of Multifactor Systems). Novosibirsk: Izd. NETI (Novosibirsk ElectroTechnological Institute), 1987; 97–102 [in Russian].Google Scholar
  42. [42]
    Deineko, V. G. Geometricheskie Razreschennie Sluchai Zadachi o Kommivojazhere (Geometrically Solvable Cases of the Travelling Salesman Problem). Unpublished manuscript, VINITI, 07.12.88 No. 8630-V88 [in Russian].Google Scholar
  43. [43]
    Aizenshtadt, V. S., and Maksimovitch, E. P. Some classes of travelling salesman problems. Kibernetika. 1978; No. 4: 80–83 [in Russian].Google Scholar
  44. [44]
    Rubinstein, M. I. On algorithms for assignment problems. Automation and Remote Control. 1981; 42, No. 7: 970–976.Google Scholar
  45. [45]
    Grober, E. Uber eine Methode zur Losung des Zuordnungs-problems. Wissenschaftliche Zeitschrift. Technische Hochschule. Dresden: Ilmenau, 1985; 27, No. 1: 39–47.Google Scholar
  46. [46]
    Townsend, W. An application of the assignment model to bus crew rostering. IMA Journal of Mathematics and Management. 1986–1987; 1, No. 1: 45–52.Google Scholar
  47. [47]
    Carpaneto, G., Martello, S., and Toth, P. Algorithms and codes for the assignment problem. Annals of Operations Research. 1988; 13, No. 1–4: 193–223.MathSciNetGoogle Scholar
  48. [48]
    Krikun, V. S. O Tochnom Metode Reschenija Kvadratnoi Zadachi o Naznachenijakh (An Exact Method for Solving the Quadratic Assignment Problem). Izd. IM AN BSSR (Institute of Mathematics, Belorussia Academy of Sciences), Preprint, 1988; No. 18 [in Russian].Google Scholar
  49. [49]
    Sergeyev, S. I. “Boundaries for the quadratic assignment problems.” In Modeli i Metody Issledovanija Operatzii (Models and Methods of Operations Research). Novosibirsk: Nauka, 1988: 112–134 [in Russian].Google Scholar
  50. [50]
    Christofides, N. Bounds for the travelling-salesman problem. Operations Research. 1972; 20, No. 5: 1044–1056.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    Volgenant, A., and Jonker, R. Improving Christofides’ lower bound for the travelling salesman problem. Optimization. 1985; 16, No. 5: 691–704.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    Volgenant, A., van der Sluis, H.J., and Jonker, R. Better assignment lower bounds for the Euclidean travelling salesman problem. Optimization. 1987; 18, No. 3: 393–404.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    Alekseyev, A. O. A multivariant travelling-salesman problem. U.S.S.R. Computational Mathematics and Mathematical Physics. 1985; 25, No. 2: 200–201.CrossRefGoogle Scholar
  54. [54]
    The travelling salesman problem. A guided tour of combinatorial optimization. Edited by Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., and Shmoys, D. B. New York: John Wiley and Sons Publ.Co., 1985.Google Scholar
  55. [55]
    Christofides N., and Eilon S. An algorithm for vehicle-dispatching problem. Operational Research Quarterly. 1969; 20, No. 3: 309–318.CrossRefGoogle Scholar
  56. [56]
    Fleischmann, B. A new class of cutting planes for the symmetric travelling salesman problem. Mathematical Programming. 1988; 40, No. 3: 225–246.MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    Gutin, G. M. Efficiency of a local algorithm for solving the travelling salesman problem. Automation and Remote Control. 1988; 49, No. 11: 1514–1519.MathSciNetMATHGoogle Scholar
  58. [58]
    Gul’anitsky, L. F., and Sapko, A. V. “Decomposition approach to solving a large-dimension travelling salesman problem.” In Pakety Prikladnykh Programm i Chislennye Metody (Application Software Packages and Numerical Methods). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1988; 8–13 [in Russian].Google Scholar
  59. [59]
    Melamed, I. I., Sergeyev, S. I., and Sigal, I. H. The travelling salesman problem. Automation and Remote Control. 1989; 50, No. 9: 1147–1173; No. 10: 1303–1324; No. 11: 1459–1479.Google Scholar
  60. [60]
    Ulusoy, G. The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research. 1985; 22, No. 3: 329–337.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    Kulkarni, R. V., and Bhave, P. R. Integer programming formulations of vehicle routing problems. European Journal of Operational Research. 1985; 20, No. 1: 58–67.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Wetzel, R. Fahrplangestaltung via Spaltenerzeugung. Wissenschaftliche Berliner Technische Hochschule. Leipzig, 1986; No. 7: 49–51.Google Scholar
  63. [63]
    Laporte, G., and Nobert, Y. “Comb inequalities for the vehicle routing problem.” Contribution to Operations Research and Mathematical Economics. 1, Methods of Operations Research, 51, Athenaum, Hain, Hanstein, Konigstein, 1984; No. 1: 271–276.MathSciNetGoogle Scholar
  64. [64]
    Skubalska, E. Zastosowanie metody podzialu i ograniczen do optymalnego ustalania tras pojazdow. Przeglad Statystyczny. 1984(1985); 31, No. 1–2: 65–81.Google Scholar
  65. [65]
    Balakrishnan, A., Ward, J. E., and Wong, R. T. Integrated facility location and vehicle routing models: recent work and future prospects. American Journal of Mathematical and Management Sciences. 1987; 7, No. 1–2: 35–61.MathSciNetGoogle Scholar
  66. [66]
    Desrosiers, J., Soumis, F., and Desrochers, M. Routing with time windows by column generation. Networks. 1984; 14, No. 4: 545–565.MATHCrossRefGoogle Scholar
  67. [67]
    Sexton, T. R., and Young-Myung Choi. Pickup and delivery of partial loads with “soft” time windows. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 369–398.MATHGoogle Scholar
  68. [68]
    Desrosiers, J., Dumas, Y., and Soumis, F. A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 301–325.MATHGoogle Scholar
  69. [69]
    Bodin, L. D., and Sexton, T. R. “The multi-vehicle subscriber dial-a-ride problem.” In Delivery Urban Services. View Towards Applied Management Science and Operations Research. Amsterdam, e.a., 1986; 73–86.Google Scholar
  70. [70]
    Politika, E. V. Rekursivnyi Algoritm Reschenija Odnoi Zadachi Marschrutizatzii (A Recursive Algorithm for Solving One Routing Problem). Kiev: VNII pochtovoy svyazi, 1985; Unpublished manuscript, TsNTI “Informsvyaz”’ (Center of Scientific and Technological Information “Informsvyaz”’), 30.12.85 No. 765—SV [in Russian].Google Scholar
  71. [71]
    Garcia-Diaz, A. A heuristic circulation-network approach to solve the multi-travelling salesman problem. Networks. 1985; 15, No. 4: 455–467.MATHCrossRefGoogle Scholar
  72. [72]
    Hoon Liong Ong, and Moore, J. B. Worst—case analysis of some heuristics for the rn-salesman problem. Material Flow. 1985; 2, No. 4: 203–209.Google Scholar
  73. [73]
    Akhlebininskiy, M. Yu., and Konstantinov, M. S. Choice of strategy for servicing of objects in certain parametric problem of M travelling salesmen. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1989; 27, No. 5: 147–152.MathSciNetGoogle Scholar
  74. [74]
    Desrosiers, J., Soumis, F., Desrochers, M., and Sauve, M. Methods for routing with time windows. European Journal of Operational Research. 1986; 23, No. 2: 236–245.MathSciNetMATHCrossRefGoogle Scholar
  75. [75]
    Kolen, A. W. J., Rinnoy Kan, A. H. G., and Trienekens, H. W. J. M. Vehicle routing with time windows. Operations Research. 1987; 35, No. 2: 266–273.MathSciNetMATHCrossRefGoogle Scholar
  76. [76]
    Cook, T. M., and Russel, R. A. A simulation and statistical analysis of stochastic vehicle routing with timing constraints. Decision Sciences. 1978; 9 No. 4: 673687.Google Scholar
  77. [77]
    Solomon, M. M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research. 1987; 35, No. 2: 254–265.MathSciNetMATHCrossRefGoogle Scholar
  78. [78]
    Buxey, G. Designing routes to minimize fleet operating cost. European Journal of Operational Research. 1985; 21, No. 1: 57–64.MathSciNetCrossRefGoogle Scholar
  79. [79]
    Laporte, G., Mercure, H., and Nobert, Y. An exact algorithm for the asymmetrical capacitated vehicle routing problem. Networks. 1986; 16, No. 1: 33–46.MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    Laporte, G., Nobert, Y., and Desrochers, M. Optimal routing under capacity and distance restrictions. Operations Research. 1985; 33, No. 5: 1050–1073.MathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    Brudaru, O. Hamiltonian circuits with generalized cost. Optimization. 1987; 18, No. 3: 405–411.MathSciNetMATHCrossRefGoogle Scholar
  82. [82]
    Borodin, V. V., Lovetskii, S. E., and Plotinskii, Yu. M. “Transportation means traffic routing.” In Planirovanie v Transportnykh Sistemakh: Modeli, Metody, Informatzionnoe Obespechenie (Planning in Transportation Systems: Models, Methods, Software.) Collected works. Moscow: Izd. Institut Problem Upravleniya ( Institute of Control Sciences, USSR Academy of Sciences ), 1978; No. 17: 26–40 [in Russian].Google Scholar
  83. [83]
    Gaskell, T. J. Bases for vehicle fleet scheduling. Operational Research Quarterly. 1967; 18, No. 3: 281–295.CrossRefGoogle Scholar
  84. [84]
    Tillman, F. A., and Cochran, H. A heuristic approach for solving the delivery problem. The Journal of Industrial Engineering. 1968; 19, No. 7: 354–358.Google Scholar
  85. [85]
    Holmes, R. A., and Parker, R. G. A vehicle scheduling procedure based upon savings and a solution perturbation scheme. Operational Research Quarterly. 1976; 27, No. 1: 83–92.MATHCrossRefGoogle Scholar
  86. [86]
    Knowles, K. The use of a heuristic tree-search for vehicle routing and scheduling. Operational Research Society Conference. London, 1967; Oxford, 1968.Google Scholar
  87. [87]
    Lovetskii, S. E., Zhitkov, V. A., and Plotinskii, Yu. M. “Routing problems for shipments in a transportation network.” In Itogi Nauki i Tekhniki. Seriya Organizatzia Upravlenia Transportom (Frontiers of Science and Technology. Series: Organization of Transportation Management). Moscow: VINITI, 1980; 2: 74–128 [in Russian].Google Scholar
  88. [88]
    Fisher, M., and Jaikumar, R. A generalized assignment heuristic for vehicle routine. Networks. 1981; 11, No. 2: 109–124.MathSciNetCrossRefGoogle Scholar
  89. [89]
    Christofides. N., and Beasley, J. E. The period routing problem. Networks. 1984; 14, No. 2: 237–256.Google Scholar
  90. [90]
    Psaraftis, H. N. Scheduling large-scale advance-request dial-a-ride systems. American Journal of Mathematical and Management Sciences. 1986; 6, No. 3–4: 327–367.MATHGoogle Scholar
  91. [91]
    Perl, J. The multidepot routing allocation problem. American Journal of Mathematical and Management Sciences. 1987; 7, No. 1–2: 7–34.MathSciNetMATHGoogle Scholar
  92. [92]
    Ogryczak, B., and Ogryczak, W. Optymalizacja tras dostaw z wykorzystaniem mikrokomputera IBM-PC. Przeglad Statystyczny. 1989; No. 1: 81–98.Google Scholar
  93. [93]
    Magnanti, T. L. Combinatorial optimization and vehicle fleet planning: perspectives and prospects. Networks. 1981; 11, No. 2: 179–213.MathSciNetCrossRefGoogle Scholar
  94. [1]
    Ford, L., and Fulkerson, D. Flows in Networks. Princeton, NJ: Princeton University Press, 1962.MATHGoogle Scholar
  95. [2]
    Lovetskii, S. E., and Melamed, I. I. Static flows in networks. Automation and Remote Control. 1987; 48, No. 10: 1269–1291.MathSciNetGoogle Scholar
  96. [3]
    Cunningham, W. H. Theoretical properties of the network simplex method. Mathematics of Operations Research. 1979; 4, No. 2: 196–208.MathSciNetMATHCrossRefGoogle Scholar
  97. [4]
    Bertsekas, D. P. A unified framework for primal-dual methods in minimum cost network flow problems. Mathematical Programming. 1985; 32, No. 2: 125–145.MathSciNetMATHCrossRefGoogle Scholar
  98. [5]
    Cunnigham, W. H. A network simplex method. Mathematical Programming. 1976; 11, No. 71: 105–116.MathSciNetCrossRefGoogle Scholar
  99. [6]
    Glover, F., Klingman, D., Mote, J., and Whitman, D. Comprehensive computer evaluation and enhancement of maximum flow algorithms. Applications of Management Science. 1983; 3, 109–175.Google Scholar
  100. [7]
    Glover, F., Klingman, D., Mote, J., and Whitman, D. A primal simplex variant for the maximum-flow problem. Naval Research Logistics Quarterly. 1984; 31: 41–61.MATHCrossRefGoogle Scholar
  101. Adel’son-Velskii, G. M., Dinitz, E. A., and Karzanov, A. V. Potokovye Algoritmy (Flow Algorithms). Moscow Nauka, 1975 [in Russian].Google Scholar
  102. [9]
    Minieka, E. Optimization Algorithms for Networks and Graphs. New York: Dekker M., 1978.MATHGoogle Scholar
  103. [10]
    Dinic, E. A. Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Mathematics. 1970; 11, No. 5: 1277–1280.Google Scholar
  104. [11]
    Karzanov, A. V. An economical algorithm for finding the maximum network flow. Ekonomika i Matematicheskie Metody. 1975; XI, No. 4: 723–729 [in Russian].MathSciNetGoogle Scholar
  105. [12]
    Nakayama, A. A polynomial algorithm for the maximum balanced flow problem with a constant balancing rate function. Journal of the Operations Research Society of Japan. 1986; 29, No. 4: 400–410.MathSciNetMATHGoogle Scholar
  106. [13]
    Kamesam, P. V., and Meyer, R. R. Multipoint methods for separable nonlinear networks. Mathematical Programing Study. 1984; 22; 185–205.MathSciNetMATHCrossRefGoogle Scholar
  107. [14]
    Siedersleben, J. A dual approach to flows with gains VII Symposium on Operations Research. Hochschule St. Gallen. August 19–21, 1982, Proc. Sekt.1–3, Konigstein/Ts., 1983; 319–325.Google Scholar
  108. [15]
    Bornstein, C. T., and Rust, R. Minimizing a sum of staircase functions under linear constraints. Optimization. 1988; 19, No. 2: 181–190.MathSciNetMATHCrossRefGoogle Scholar
  109. [16]
    Goldfard, D., and Grigoriadis, M. D. A computational comparison of the Dinic and network simplex methods for maximum flow. Annals of Operations Research. 1988; 13, No. 1–4: 83–123.MathSciNetGoogle Scholar
  110. [17]
    Bertsekas, D. P., and Tseng, P. The relax codes for linear minimum cost network flow problems. Annals of Operations Research. 1988; 13, No. 1–4: 125–190.MathSciNetCrossRefGoogle Scholar
  111. [18]
    Hu, T. Integer Programming and Network Flows. Reading, Mass.: AdissonWesley Pub. Co., 1969.MATHGoogle Scholar
  112. [19]
    Dinic, E. A. Economnye Algoritmy dlja Reschenija Zadach Transportnogo Tipa (Economical Algorithms for Solving Transportation-type Problems). Abstract of Ph. D. Thesis, Moscow, 1973 [in Russian].Google Scholar
  113. [20]
    Minieka, E. Maximal, dynamic and lexicographic flows. Operations Research. 1973; 21, No. 2: 517–527.MathSciNetMATHCrossRefGoogle Scholar
  114. [21]
    Rothfarb, W., Shein, N. P., and Frisch, I. T. Common terminal multicommodity flow. Operations Research. 1968; 16, No. 1: 202–205.MATHCrossRefGoogle Scholar
  115. [22]
    Karzanov, A. V. “One class of problems of maximum commodity flows with integer optimum solutions.” In Modelirovanie i Optimizatzija Sistem Slozhnoi Struktury (Modelling and Optimization of Complex Structure Systems). Omsk: Izd. OmGU (Omsk State University), 1987; 103–121 [in Russian].Google Scholar
  116. [23]
    Demidovich, O. I. Vichislenie Nizhnikh Otzenok v Mnogoekstremal’noi Zadache o Potoke Minimal’noi Stoimosti (Calculating Lower Estimates in Multimodal Minimum Cost Flow Problem). Moscow: Izd. VTz AN SSSR ( Computer Center, USSR Academy of Sciences ), 1988 [in Russian].Google Scholar
  117. [24]
    Gersht, A., and Shulman, A. A new algorithm for solution of the minimum cost multicommodity flow problem. 26th IEEE Conference on Decision Science and Control. Los Angeles, California. December 9–11, 1987; 1, New York, 1987: 748758.Google Scholar
  118. [25]
    Pang, Jong-Shi, and Yu, Chang-Sung. Linearized simplicial decomposition methods for computing traffic equilibria on networks. Networks. 1984; 14, No. 3: 427438.Google Scholar
  119. [26]
    Aiello, A., Burattini, E., Furnari, M., and Massarotti, A. On the computational complexity of the traffic equilibrium flow problem. Atti delle Giornate di Lavoro della Associazione Italiana di Ricerca Operativa (AIRO), Napoli, 26–28 sett., 1983. Napoli, 1983; 203–213.Google Scholar
  120. [27]
    Defermos S. C., and Nagurney A. Sensitivity analysis for the asymmetric network equilibrium problem. Mathematical Programming. 1984; 28, No. 2: 174–184.MathSciNetCrossRefGoogle Scholar
  121. [28]
    Steinberg, R., and Stone, R. E. The prevalence of paradoxes in transportation equilibrium problems. Transportation Science. 1988; 22, No. 4: 231–241.MathSciNetMATHCrossRefGoogle Scholar
  122. [29]
    Hearn, D. W., Lawphongpanich, S., and Ventura J. A. Restricted simplicial decomposition: computation and extensions. Mathematical Programming Study. 1987; No. 31: 99–118.MathSciNetMATHCrossRefGoogle Scholar
  123. [30]
    Hearn, D. W., Lawphongpanich, S., and Nguyen, S. Convex programming formulations of the asymmetric traffic assignment problem. Transportation Research. 1984; 18B, No. 4–5: 357–365.MathSciNetGoogle Scholar
  124. [31]
    Aronson, J. E. The multiperiod assignment problem: a multicommodity network flow model and specialized branch and bound algorithm. European Journal of Operational Research. 1986; 23, No. 3: 367–381.MathSciNetCrossRefGoogle Scholar
  125. [32]
    Moiseenko, G. E. A multicommodity network flow problem with commodity conversion. Automation and Remote Control. 1984; 45, No. 11: 1464–1470.MathSciNetMATHGoogle Scholar
  126. [33]
    Glover, F., and Klingman, D. The simplex SON algorithm for LP/embedded network problems. Mathematical Programming Study. 1981; 15: 148–176.MathSciNetMATHCrossRefGoogle Scholar
  127. [34]
    Lovetskii, S. E., and Melamed, I. I. “Optimum control of transportation flows.” In Upravlenie v Transportnykh Sistemakh (Control in Transportation Systems). Moscow: Izd. Institut Problem Upravleniya ( Institute of Control Sciences, USSR Academy of Sciences ), 1985; 5–8 [in Russian].Google Scholar
  128. [35]
    Boltianskiy, V. G. Optimum Control of Discrete Systems. New York: John Wiley and Sons Publ.Co., 1978.Google Scholar
  129. [36]
    Lovetskii, S. E., and Melamed, I. I. Dynamic flows in networks. Automation and Remote Control. 1987; 48, No. 11: 1417–1434.MathSciNetGoogle Scholar
  130. [37]
    Bellmore, M., and Vemuganti, R. R. On multi-commodity maximal dynamic flows. Operations Research. 1973; 21, No. 1: 10–21.MathSciNetMATHCrossRefGoogle Scholar
  131. [38]
    Gale, D. Transient flows in networks. The Michigan Mathematical Journal. 1959; 6: 59–63.MathSciNetMATHCrossRefGoogle Scholar
  132. [39]
    Ciurea, E. Two classes of maximal dynamic flows. Economic Computation and Economic Cybernetics Studies and Research. 1985; 20, No. 1: 73–79.MathSciNetGoogle Scholar
  133. [40]
    Jarvis, J.J., and Ratliff, H. D. Some equivalent objectives for dynamic network flow problems. Management Science. 1982; 28, No. 1: 106–109.MathSciNetMATHCrossRefGoogle Scholar
  134. [41]
    Aronson, J. E., and Chen, B. D. A forward network simplex algorithm for solving multiperiod network flow problems. Naval Research Logistics Quarterly. 1986; 33, 445–467.MathSciNetMATHCrossRefGoogle Scholar
  135. [42]
    Lovetskii, S. E., and Melamed, I. I. “Optimum control of dynamic transportation flows under random disturbances.” In Matematicheskie Metody Reschenija Zadach Transporta (Mathematical Methods of Transport Problems Solution). Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), Collected works, 1988; No. 802: 67–90 [in Russian].Google Scholar
  136. [43]
    Davydov, E. G. Igry, Grafy, Resursy (Games, Graphs, Resources). Moscow: Radio i svyaz’, 1981 [in Russian].Google Scholar
  137. [44]
    Trietsch, D. Comprehensive design of highway networks. Transportation Science. 1987; 21, No. 3: 26–35.CrossRefGoogle Scholar
  138. [45]
    Mikhailenko, V. M., Kushnir, G. A., and Shmeleva, T. F. “Transportation schemes optimization by flow programming methods.” In Avtomatizirovannye Sistemy Uprablenija i Pribory Avtomatiki ( Automated Control Systems and Devices ). Khar’kov, 1987; No. 84: 44–47 [in Russian].Google Scholar
  139. [46]
    Vil’chevskii, N. O. Flexibility of production systems of transport. Sbornik Trudov. VNII Sistemnykh Issledovanii (Collected works. All- Union Institute of System Studies). 1986; No. 19: 114–119 [in Russian].Google Scholar
  140. [47]
    Pel’tsverger, V. V., and Khavronin, O. V. A decompositional approach to the solution of complex combinatorial optimization problems. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1988; 26, No. 5: 143–150.MathSciNetMATHGoogle Scholar
  141. [48]
    Malashenko, Yu. E., and Novikova, N. M. Mnogokriterialnyi i Maksiminnyi Analiz Mnogoproductovykh Seteji (Multicriteria and Maximin Analysis of Multicommodity Networks). Moscow: Izd. VTz AN SSSR ( Computer Center, USSR Academy of Sciences ), 1988 [in Russian].Google Scholar
  142. [49]
    Vasil’eva, E. M., and Levit, V. Yu. “An algorithm for recursive constraints account and modern technology of solving the network development problem.” In Voprosy Soverschenstvovanija i Primenenija Ekonomiko-Matematicheskikh Metodov na Transporte. Trudy IKTP pri Gosplane SSSR. (Problems of Planning Perfection and Applying Economic Mathematical Methods in Transport. Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). Moscow: Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). 1979; No. 69: 151–159 [in Russian].Google Scholar
  143. [50]
    Vasil’eva, E. M., Levit, V. Yu., and Livshitz, V. N. Choosing the time path for developing a main-line transportation network. Matekon. Fall, 1980; 17, No. 1: 81–106.Google Scholar
  144. [51]
    Livshitz, V. N. Vybor Optimal’nykh Reschenii v Techniko-Ekonomicheskikh Raschetakh (Optimum Solutions Choice in Technical-Economic Calculations). Moscow: Ekonomika, 1971 [in Russian].Google Scholar
  145. [52]
    Pozamantir, E. I. “On one dynamic model of optimal planning of a transportation network development.” In Trudy IKTP pri Gosplane SSSR ( Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). Moscow: Collected Works of Institute of Complex Transportation Problems of the USSR State Planning Committee ). 1974; No. 46: 161–183 [in Russian].Google Scholar
  146. [53]
    Vasil’eva, E. M., Levit, V. Yu., and Livshitz, V. N. Nelineinye Transportnye Zadachi na Seti (Nonlinear Transportation Problems on Networks). Moscow: Finansy i statistika, 1981 [in Russian].Google Scholar
  147. [54]
    Levit, V. Yu., and Livshitz, V. N. Nelineinye Setevye Transportnye Zadachi (Nonlinear Network Transportation Problems). Moscow: Transport, 1972 [in Russian].Google Scholar
  148. [55]
    Orlin, J. B. Minimum convex cost dynamic network flows. Mathematics of Operations Research. 1984; 9, No. 2: 190–207.MathSciNetMATHCrossRefGoogle Scholar
  149. [1]
    Belen’kii, A. S., and Levner, E. V. Scheduling models and methods in optimal freight transportation planning. Automation and Remote Control. 1989; 50, No. 1: 1–56.MathSciNetGoogle Scholar
  150. [2]
    Belen’kii, A. S. Matematicheskie Modeli Optimal’nogo Planirovanija v Transportnykh Sistemakh. Itogi Nauki i Tekhniki. Seria Organizatzia Upravlenia Transportom. (Mathematical Models of Optimum Planning in Transportation Systems. Frontiers of Science and Technology. Series Organization of Transport Management). Moscow: VINITI, 7, 1988 [in Russian].Google Scholar
  151. [3]
    Belen’kii, A. S. Metody Optimal’nogo Planirovanija na Transporte (Transport Optimum Planning Methods). Moscow: Znanie, 1988 [in Russian].Google Scholar
  152. [4]
    Belen’kii, A. S. “Mathematical models and methods of discrete optimization in freight conveyance optimum planning problems.” In Diskretnaja Optimizatzija i Kompjutery. III Vsesojuznaja Schkola g. Taschtagol. Tezisy Dokladov (Discrete Optimization and Computers. III All- Union Conference. Abstracts of papers.). Moscow: Izd. TsEMI AN SSSR (Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1987; 81–89 [in Russian].Google Scholar
  153. [5]
    Shkurba, E. V., and Zinder, Yu. A. “Scheduling theory.” In Matematicheskaja Entziklopedija (Mathematical Encyclopedia). Moscow: Sovetskaya Entsiklopedija, 1984; 4: 870–872 [in Russian].Google Scholar
  154. [6]
    Balas, E. An additive algorithm for solving linear programs with zero-one variables. Operations Research. 1965; 13, No. 4: 517–546.MathSciNetCrossRefGoogle Scholar
  155. [7]
    Mikhalevich, V. S., and Shor, N. Z. “Method of sequential analysis of variants in solving variational problems of control, planning, and designing.” In Tezisy Dokladov IV Vsesojuznogo Matematicheskogo S’ezda (IV All-Union Mathematical Congress. Abstracts of Papers). Moscow, 1961; 91 [in Russian].Google Scholar
  156. [8]
    Emelichev, V. A. Problems of discrete optimization. Soviet Physics Doklady. 1970; 15, No. 6: 533–534.MathSciNetMATHGoogle Scholar
  157. [9]
    Cherenin, V. P. “Solving some optimum planning combinatorial problems by the sequential calculation method.” In Nauchno-Metodicheskie Materialy Ekonomiko-Matematicheskogo Seminara Laboratorii Teorii EkonomikoMatematicheskikh Metodov AN SSSR (Scientific-Methodological Materials of the Economic-Mathematical Seminar of the Economic-Mathematical Methods Laboratory of the USSR Academy of Sciences). Moscow: Izd. VTz AN SSSR (Computer Center, USSR Academy of Sciences ), 1962; No. 2: 49–59 [in Russian].Google Scholar
  158. [10]
    Bruno, J. L., Coffman, E. G. Jr., Graham, R. L., Kohler, W. H., Sethi, R., Stieglitz, K., and Ullman, J. D. Computer and Job-Shop Scheduling Theory. New York: John Wiley and Sons Publ. Co., 1976.Google Scholar
  159. [11]
    Levner, E. V. Optimal planning of parts’ machining on a number of machines. Automation and Remote Control. 1969; No. 12: 1972–1978.MathSciNetGoogle Scholar
  160. [12]
    Johnson, S. M. Optimal two-and three-stage production schedules with set up times included. Naval Research Logistics Quarterly. 1954; No. 1: 61–68.CrossRefGoogle Scholar
  161. [13]
    Vengerova, I. V., and Finkel’stein, Yu. Yu. To the branch-and-bound method efficiency. Ekonomika i matematicheskie metody. 1975; XI, No. 1: 186–193 [in Russian].MathSciNetGoogle Scholar
  162. [14]
    Finkel’stein, Yu. Yu. Priblizhennye Metody i Prikladnye Zadachi Diskretnogo Programmirovanija (Approximate Methods and Applied Problems of Discrete Programming). Moscow: Nauka, 1976 [in Russian].Google Scholar
  163. [15]
    Sebastian, H.-J. Optimierung and optimale Steuerung eines allgemeinen Transport-Umschlag and Lagerhaltungsprozesses. (Teil 2). Routing Probleme mit Zeitintervall-Beschrankungen. Wissenschaftliche Zeitschrift. Technische Hochschule. Leipzig, 1986; 10, No. 4: 193–202.MATHGoogle Scholar
  164. [16]
    Ryan, D. M., and Foster B. A. “An integer programming approach to scheduling.” In Computer Scheduling of Public Transportation. Urban Passenger Vehicle and Crew Scheduling. North-Holland, Amsterdam, 1981: 269–280.Google Scholar
  165. [17]
    Fischetti, M., and Toth, P. Procedure di bounding e di dominanza per problemi di offimizzazione combinatoria. Ricerca Operativa. 1987; 17, No. 42: 61–101.Google Scholar
  166. [18]
    Sukharev, A. G., Timokhov, A. V., and Fedorov, V. V. Kurs Metodov Optimizatzii (A Course on Optimization Methods). Moscow: Nauka, 1986 [in Russian].Google Scholar
  167. [19]
    Bellman, R. Mathematical aspects of scheduling theory. SIAM Journal. 1956; 4, No. 3: 168–205.MATHCrossRefGoogle Scholar
  168. [20]
    Zinder, Ya. A. “Priority solvability of one class of ordering problems.” In Vo-prosy Sozdanija Avtomatizirovannykh Sistem Upravlenija (Problems of Designing Computer Aided Systems). Kiev: Izd. IK AN UkSSR (Institute of Cybernetics, Ukrainian Academy of Sciences ), 1976; 52–57 [in Russian].Google Scholar
  169. [21]
    Korbut, A. A., and Finkel’stein, Yu. Yu. Diskretnoe Programmirovanie (Discrete Programming). Moscow: Nauka, 1969 [in Russian].Google Scholar
  170. [22]
    Bellman, R. E., and Dreifus, S. E. Applied Dynamic Programming Problems. Princeton, NJ: Princeton University Press, 1962.Google Scholar
  171. [23]
    Lusicic, B. “Scheduling of new trains into the existing timetable with the minimization of additional railway power consumption costs.” In International Association of Science and Technology for Development, Modelling, Identification, and Control. 3rd International Symposium. Papers. Innsbruck, Febr. 14–17, 1984. Anaheim., Calif., e.a., 36–39.Google Scholar
  172. [24]
    Tanayev, V. S., and Shkurba, V. V. Vvedenie v Teoriju Raspisanii (Introduction to the Scheduling Theory). Moscow: Nauka, 1975 [in Russian].Google Scholar
  173. [25]
    Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of scheduling. Reading, Mass.: Adisson-Wesley Pub. Co., 1967.MATHGoogle Scholar
  174. [26]
    Giffler, B., Thompson, D., and Van-Nesse, V. “Calculation experience using linear and Monte-Carlo algorithms for solving manufacturing timetable planning problems.” In Kalendarnoe Planirovanie (Timetable planning). Moscow: Progress, 1966; 42–61 [in Russian].Google Scholar
  175. [27]
    Manne, A. S. On the job-shop scheduling problem. Operations Research. 1960; 8, No. 2: 219–223.MathSciNetCrossRefGoogle Scholar
  176. [28]
    Bowman, E. H. The schedule-sequencing problem. Operations Research. 1959; 7, No. 5: 621–624.MATHCrossRefGoogle Scholar
  177. [29]
    Dantzig, G. B. A machine-job scheduling model. Management Science. 1960; 6, No. 2: 191–196.CrossRefGoogle Scholar
  178. [30]
    Kofman, A., and Debasey, G. Application aux Programms de Production et d’Etudes de la Methode P.E.R.T. et de ses Variantes. Dunod, Paris, 1964.Google Scholar
  179. [31]
    Bunkin, V. A., Kolev, D., Kuritskii, B. Ya., et al. “Models of network planning and control with regard to resources.” In Modeli Setevogo Planirovanija i Upravlenija s Uchetom Resursov. Spravochnik po Optimizatzionnym Zadacham v ASU (A Handbook Manual on Optimization Problems in Computer Aided Systems). Leningrad: Mashinostroenie, 1984; 161–175 [in Russian].Google Scholar
  180. [32]
    Pleshchinskii, A. S. “Models and methods of solving network production planning and control problems.” In Ekonomiko-Matematicheskie Modeli v Sisteme Upravlenija Predprijatijami (Economic-Mathematical Models for Enterprise Control System). Moscow: Nauka, 1983; 303–356 [in Russian].Google Scholar
  181. [33]
    Tanaev, V. S., Gordon, V. S., and Shafranskyi, Y. M. Scheduling Theory. Single-Stage Systems. Series Mathematics and its Applications. Kluwer Academic Publishers, 1994.Google Scholar
  182. [34]
    Lebedev, S. S., and Fridman, A. A. “New trends in discrete programming.” In Matematicheskii Apparat Ekonomicheskogo Modelirovanija (Mathematical Tools of Economic Modelling). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1983; 136–158 [in Russian].Google Scholar
  183. [35]
    Levner, E. V. “Network approach to scheduling theory problems.” In Issledovanija po Diskretnoi Matematike (Studies in Discrete Mathematics). Moscow: Nauka, 1973; 135–150 [in Russian].Google Scholar
  184. [36]
    Nabeshima, I. Sequencing on two machines with start lag and stop lag. Journal of the Operations Research Society of Japan. 1963; 5, No. 3: 97–101.Google Scholar
  185. [37]
    Davydov, E. G. Igry, Grafy, Resursy (Games, Graphs, Resources). Moscow: Radio i svyaz’, 1981 [in Russian].Google Scholar
  186. [38]
    Gens, G. V., and Levner, E. V. Effektivnye Priblizhennye Algoritmy dlja Kombinatornykh Zadach (Effective Approximate Algorithms for Combinatorial Problems). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1981 [in Russian].Google Scholar
  187. [39]
    Magazine, M. J., Nemhauser, G. L., and Trotter, L. E. When the greedy solution solves a class of knapsack problems. Operations Research. 1975; 23, No. 2: 207217.Google Scholar
  188. [40]
    Kannan, R., and Korte, B. Approximative Combinatorial Algorithms. Bonn: University of Bonn, 1978; Report No. 78107.Google Scholar
  189. [41]
    Levner, E. V. Teorija Raspisanii v Ekonomicheskikh Sistemakh (Nekotorie Matematicheskie Voprosy) (Scheduling Theory in Economic Systems (Some Mathematical Aspects)). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1977 [in Russian].Google Scholar
  190. [42]
    Mikhalevich, V. S., and Kuksa, A. I. Metody Posledovatel’noi Optimizatzii (v Diskretnykh Setevykh Zadachakh Optimal’nigo Raspredelenija Resursov) (Sequential Optimization Methods (in Discrete Network Problems of Optimum Resources Allocation)). Moscow: Nauka, 1983 [in Russian].Google Scholar
  191. [43]
    Sergienko, I. V., Lebedeva, T. T., and Roschin, V. A. Priblizhennye Metody Reschenija Zadach Optimizatzii (Approximation Methods for Solving Optimization Problems). Kiev: Naukova dumka, 1980 [in Russian].Google Scholar
  192. [44]
    Levin, M. Sh. Primenenie Optimizatzionnykh Kombinatornykh Modelei v Avtomatizirovannykh Sistemakh. Obzornaja Informatzija. Tekhnologija, Oborudovanie, Organizatzija i Ekonomika Maschinostroenija. Serija C-9. Avtomatizirovannye Sistemy Proektirovanija i Upravlenija (Application of Optimization Combinatorial Models in Computer Aided Systems. Review. Technology, Equipment, Organization and Economics of Machine-Building. Series C-9. Computer Aided Systems of Projecting and Control.). Moscow: Izd. VNIITEMR, 1986; No. 1 [in Russian].Google Scholar
  193. [45]
    Smith, W. E. Various optimizers for single-state production. Naval Research Logistics Quarterly. 1956; 3, No. 1–2: 59–66.MathSciNetCrossRefGoogle Scholar
  194. [46]
    Gordon, V. S., and Shafranskii, Ya. M. Optimum ordering with sequential-parallel priority constraints. Doklady Akademii Nauk BSSR. 1978; No. 3: 244–247 [in Russian].Google Scholar
  195. [47]
    Garey, M. R., and Johnson, D. S. Computers and Intractability: a Guide to the Theory of NP-completeness. San Francisco: W. H. Freeman, 1979.MATHGoogle Scholar
  196. [48]
    Fisher, M. L. “Optimal solution of scheduling problems using Lagrange multipliers: part II.” In Lecture Notes in Economics and Mathematical Systems. 1973; 86: 294–318.CrossRefGoogle Scholar
  197. [49]
    Demin, V. K., and Chebotarev, A. S. Optimum servicing of a determinate flow of requirements. I. Lower estimate of the problem. Engineering Cybernetics. 1976; 14, No. 4: 74–80.Google Scholar
  198. [50]
    Levner, E. V., and Gens, G. V. Diskretnye Optirnizatzionnye Zadachi i Effektivnye Priblizhennye Algorttmy (Discrete Optimization Problems and Efficient Approximation Algorithms. Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1978 [in Russian].Google Scholar
  199. [51]
    Belov, I. S., and Stolin, Ya. N. “An algorithm in a one-route timetable planning problem.” In Matematicheskaja Ekonomika i Funktzional’nyi Analiz (Mathematical Economics and Functional Analysis). Moscow: Nauka, 1974; 248–257 [in Russian].Google Scholar
  200. [52]
    Sevastyanov, S. V. “Geometry in the scheduling theory.” In Modeli i Metody Optimizatzii. Trudy Instituta Matematiki SO AN SSSR (Optimization Models and Methods. Collected Works. Institute of Mathematics, Siberian Division of the USSR Academy of Sciences). Novosibirsk: Nauka, 1989; 10, 213–260 [in Russian].Google Scholar
  201. [53]
    Gens, G. V., and Levner, E. V. Discrete optimization problems and efficient approximation algorithms (a review). Engineering Cybernetics. 1979; No. 6: 111.Google Scholar
  202. [54]
    Levin, M. Sh. Deterministic planning problems with identical processors and simultaneous appearance of orders. Engineering Cybernetics. 1982; 20, No. 4: 49–56.MATHGoogle Scholar
  203. [55]
    Coffman, E. G., Garey, M. R., and Johnson, D. S. “Approximation algorithms for bin-packing—an updated survey.” In Algorithm Design for Computer System Design. CISM Causes and Lectures. Wien-New York: CISM Causes and Lectures. 1984; 284: 49–106.Google Scholar
  204. [56]
    Gens, G. V., and Levner, E. V. “Dichotomous search for suboptimal solutions for knapsack-type problems.” In Matematicheskaja Ekonomika i Ekstremal’nye Zadachi (Mathematical Economics and Extreme Problems). Moscow: Nauka, 1984; 138–150 [in Russian].Google Scholar
  205. [57]
    Lawler, E. L. Fast approximation algorithms for knapsack problems. Mathematics of Operations Research. 1979; 4, No. 4: 339–356.MathSciNetMATHCrossRefGoogle Scholar
  206. [58]
    Levin, M. Sh., and Levner, E. V. An effective solution to the Bellman-Johnson problem on a tree-like network. Automation and Remote Control. 1978; 39, No. 10: 1493–1496.MathSciNetGoogle Scholar
  207. [59]
    Vichislitel’nye Maschiny i Teorija Raspisanii. Redaktor E. G.Kofman (Computers and Scheduling Theory. Kofman, E. G. ed.). Moscow: Nauka, 1983 [in Russian].Google Scholar
  208. [60]
    Yudin, D. B., and Yudin, A. D. Chislo i Mysl’. Matematiki Izmerjajut Slozhnost’ (Number and Thought. Mathematicians Measure Complexity). Moscow: Znanie, 1985; No..8 [in Russian].Google Scholar
  209. [61]
    Karmanov, V. G. Matematicheskoe Programmirovanie (Mathematical Programming). Moscow: Nauka, 1980 [in Russian].MATHGoogle Scholar
  210. [62]
    Saradzishvili, Ts. I., Gabisoniya, G. V., and Kukhtashvili, K. V. “One problem of timetable planning with vector indices of quality.” In Trudy Instituta Sistem Upravlenija AN GSSR (Collected Works. Institute of Control Systems, Georgia Academy of Sciences). Tbilisi: Metzniereba, 1987; 25, No. 1: 156–162 [in Russian].Google Scholar
  211. [63]
    Gimadi, E. H. “On some mathematical models and methods of large-scale projects planning.” In Modeli i Metody Optimizatzii. Trudy Instituta Matematiki SO AN SSSR (Optimization Models and Methods. Collected Works. Institute of Mathematics, Siberian Division of the USSR Academy of Sciences). Novosibirsk: Nauka, 1989; 10: 89–115 [in Russian].Google Scholar
  212. [64]
    Martello, S., and Toth, P. A new algorithm for the 0–1 knapsack problem. Management Science. 1988; 34, No. 5: 633–644.MathSciNetMATHCrossRefGoogle Scholar
  213. [65]
    Medvedovskaya, I. G. “Dual methods of solving the multidimensional knapsack problem.” In Zadachi Diskretnoi Optimizatzii i Metody ikh Reschenija (Discrete Optimization Problems and Methods for their Solving). Moscow: TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1987; 27–46 [in Russian].Google Scholar
  214. [66]
    Kokhova, S. V., and Kosorukov, O. A. A class of dynamic problems of optimal resource distribution on networks. Moscow University Computational Mathematics and Cybernetics. 1988; No. 3: 36–44.MathSciNetGoogle Scholar
  215. [67]
    Grigor’yeva, N. S., Latypov, I. Sh., and Romanovskiy, I. V. Cyclic problems of scheduling theory. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1988; 27, No. 2: 34–40.MathSciNetGoogle Scholar
  216. [68]
    Cheng, T. C. E. Optimal constant due-date assignment and sequencing. International Journal of Systems Science. 1988; 19, No. 7: 1351–1354.MathSciNetMATHGoogle Scholar
  217. [69]
    van de Velde, S. L. Minimizing total completion time in the two-machine flow stop by Lagrangian relaxation. Report. Center for Mathematics and Computer Science. 1988; OS OS-R8808; 1–8.Google Scholar
  218. [1]
    Golshtein, E. G., and Yudin, D. B. Zadachi Lineinogo Programmirovanija Transportnogo Tipa (The Transportation Problem). Moscow: Nauka, 1969 [in Russian].Google Scholar
  219. [2]
    Abramov, M. M., and Kapustin, V. F. Matematicheskoe Programmirovanie (Mathematical Programming). Leningrad: Izd. LGU (Leningrad State University ), 1981 [in Russian].MATHGoogle Scholar
  220. [3]
    Shafaat, A, and Goyal, S. K. Resolution of degeneracy in transportation problems. Journal Operational Research Society. 1988; 39, No 4: 411–413.MATHGoogle Scholar
  221. [4]
    Saxena, P. K. Shipping cost: completion-date tradeoffs in fractional transportation problems with penalty cost. Ricerca Operativa. 1985; 15, No. 35: 3–15.Google Scholar
  222. [5]
    Glickman T. S., and Berger P. D. Cost/completion-date tradeoffs in the transportation problem. Operations Research. 1977; 25, No. 1: 163–168.MATHCrossRefGoogle Scholar
  223. [6]
    Mason, F., and Sorato, A. “Su un problema di transporto con obiettivo bottleneck.” Atti delle Giornate di Lavoro della Associazione Italiana di Ricerca Operativa, (AIRO), Venezia, 30 sett.-2 ott. 1985. Bologna, 1985; 121–141.Google Scholar
  224. [7]
    Hirche, J. Optimalitat der Nordwesteckenlosung beim Transportproblem mit monoton kreuz-differenten Kosten. Wissenschaftliche Zeitschrift. Martin-LutherUniversitaet (Hall-Wittenberg) Mathematisch-Naturwissenschaftliche. 1985; 34, No. 4: 59–62.MathSciNetMATHGoogle Scholar
  225. [8]
    Evans, J. R. The factored transportation problem. Management Science. 1984; 30, No. 8: 1021–1024.MathSciNetMATHCrossRefGoogle Scholar
  226. [9]
    Intrator, J. Experimental comparisons of codes for long transportation problems. Computers and Operations Research. 1985; 12, No. 4: 391–394.MATHCrossRefGoogle Scholar
  227. [10]
    Mazurov, V. D. “Committee solutions of inconsistent optimization and classification problems.” In Materialy Vsesojuznogo Seminara po Diskretnoj Matematike i ce Prilozhenijam. Janvar’ 31–Fevral’ 2, 1984 (Papers of the All-Union Seminar on Discrete Mathematics and its Application. January 31–February 2, 1984). Moscow: Izd. MGU (Moscow State University), 1986; 23–28 [in Russian].Google Scholar
  228. [11]
    Belen’kii, A. S. Matematicheskie Modeli Optimal’nigo Planirovanija v Transportnykh Sistemakh. Itogi Nauki i Tekhniki. Organizatzija Upravlenija Transportom (Mathematical Models of Optimum Planning in Transportation Systems. Series: Frontiers of Science and Technology. Organization of Transport Management). Moscow: Izd. VINITI, 7, 1988 [in Russian].Google Scholar
  229. [12]
    Shevchenko, A. N. “Using the dynamic programming method and duality theory for the multi-index transportation problem.” In Algoritmy Reschenija Setevykh Zadach (Network Problems Solution Algorithms). Moscow: Izd. TsEMI AN SSSR ( Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1984; 45–58 [in Russian].Google Scholar
  230. [13]
    Ryang, So Yon. A solution method of the fractional n-index transportation problem with pass capacity. Cyxak, Mathematics. 1987; No. 21: 21–28.MathSciNetGoogle Scholar
  231. [14]
    Gambarov, L. A. “Decomposition of multi-index problems of placing orders for production.” In Teorija Optimal’nykh Reschenii (Optimum Solution Theory). Kiev: Izd. IK AN UkSSR ( Institute of Cybernetics, Ukrainian Academy of Sciences ), 1987; 4–9 [in Russian].Google Scholar
  232. [15]
    Gambarov, L. A. “Using the possible directions method for solving multi-index transportation linear programming problems.” In Primenenie Matematicheskikh Metodov pri Optimizatzii Slozhnykh Ekonomicheskikh Sistem (Using Mathematical Methods for Complex Economic Systems Optimization). Kiev: Izd. IK AN UkSSR (Institute of Cybernetics, Ukrainian Academy of Sciences ), 1984; 20–26 [in Russian].Google Scholar
  233. [16]
    Das, C., and Patel, G. A variant of the solid transportation problem with mixed constraints. Ricerca Operativa. 1987; 17, No. 42: 103–130.Google Scholar
  234. [17]
    Cabot A. V., and Erenguc S.S. Some branch-and-bound procedures for fixed-cost transportation problems. Naval Research Logistic Quarterly. 1984; 31, No. 1: 145–154.MathSciNetMATHCrossRefGoogle Scholar
  235. [18]
    Schaffer J. R., and O’Leary, D. E. Use of penalties in a branch and bound procedure for the fixed charge transportation problem. European Journal of Operational Research. 1989; 43, No. 3: 305–312.MATHCrossRefGoogle Scholar
  236. [19]
    Holmberg, K., and Jornsten, K. Cross decomposition applied to the stochastic transportation problem. European Journal of Operational Research. 1984; 17, No. 3: 361–368.MathSciNetMATHCrossRefGoogle Scholar
  237. [20]
    Korchemkin, M. B. Decomposition and aggregation for solving transportation and transshipment problems. Modelling, Simulation, and Control. 1986; No. 2: 25–35.Google Scholar
  238. [21]
    Matveenko, V. D. A combinatorial approach to the problem of solvability of the three-index transportation problem. Mathematical Notes of the Academy of Sciences of the USSR. 1986; 40, No. 2: 638–643.MathSciNetMATHGoogle Scholar
  239. [22]
    Gambarov, L. A. Coordination of systems of transportation planning and on-line control of plans realization processes. Vestnik Khar’kovskogo Polytekhnicheskogo Instituta. Khar’kov, 1987; No. 240: 68–70 [in Russian].Google Scholar
  240. [23]
    Kravtsov, M. K., and Miksjuk, S. F. Ob Uslovijakh Razreshimosti ChastichnoTzelochislennykh Transportnykh Zadach (On solubility conditions of partially integer transportation problems). Izvestiya Akademii Nauk BSSR, Seriya fiz.-mat. nauk. Minsk, 1986; Unpublished manuscript, VINITI, 19.05.86, No. 3590-B [in Russian].Google Scholar
  241. [24]
    Pelikan, J. Dopravni problem s kontejnerovou prepravou. Ekonomiko-Mathematichesky Obzor. 1984; 20, No. 4: 434–442.MathSciNetGoogle Scholar
  242. [25]
    Shirokov, L. A. “A matrix algorithm with variable structure for optimum control of mutual delivery balance at the branch enterprises.” In Prikladnoe i Sistemnoe Programmirovanie (Applied and System Programming). Moscow: Izd. MIREA ( Moscow Institute of Radio Engineering, Electronics, and Automation ), 1986; 189–199 [in Russian].Google Scholar
  243. [26]
    Verma, V., Puri, M. C. Constrained transportation problem with upper and lower bounds on row-availabilities and destination requirements. Cahiers. Centre d’Etudes de Recherche Operationnelle. 1988; 30, No. 23: 177–189.MathSciNetMATHGoogle Scholar
  244. [27]
    Potapova, L. I. “On the transportation problem solution procedure according to the time criterion.” In Algoritmy Reschenija Setevykh Zadach (Network Problems Solution Algorithms). Moscow: Nauka, 1984; 33–41 [in Russian].Google Scholar
  245. [28]
    Alekseyev, A. O. “A time-criterion transportation problem with a limited number of transportation means.” In Matematicheskie Metody Optimizatzii i Upravlenija v Slozhnykh Sistemakh (Mathematical Methods of Optimization and Control in Complex Systems). Kalinin Izd. Kalinin GU (Kalinin State University), 1984; 60–65 [in Russian].Google Scholar
  246. [29]
    Khanna, S. Multi-index time transportation problem. Ricerca Operativa. 1983; 13, No. 28: 27–35.Google Scholar
  247. [30]
    Golshtein, E. G., and Yudin, D. B, D. B. “On a class of problems in the planning of national economy.” In Problems of Cybernetics. Oxford, New York: Pergamon Press, 1964; 5; 226–252.Google Scholar
  248. [31]
    Shakhidi, A. A. On one method of solving a production-transportation problem. Izvestiya Akademii Nauk USSR. Seriya Tekhnicheskikh Nauk. 1985; No. 3: 5–6 [in Russian].Google Scholar
  249. [32]
    Neralich, L., Sirovitsa, L., Skok, S., and Hunet, D. Production-transportation problem solution by the Benders decomposition method. Economika i matematicheskie metody. 1984; XX, No. 6: 1140–1143 [in Russian].MathSciNetGoogle Scholar
  250. [33]
    Khan, A. M. Solid-waste disposal with intermediate transfer stations: an application of the fixed-change location problem. Journal Operational Research Society. 1987; 38, No. 1: 31–37.MATHGoogle Scholar
  251. [34]
    Yudin, D. V., and Yudin, A. D. Ekstremalnye Modeli v Ekonomike (Extreme Models in Economics). Moscow: Ekonomika, 1979 [in Russian].Google Scholar
  252. [35]
    Akulich, F. E. Dekompozitzionnyi Algoritm Reshenija Zadachi o Maksimal’nom Potoke v Seti (A Decomposition Algorithm for Solving the Maximum Network Flow Problem). Izvestiya Akademii Nauk BSSR. Seriya fiz.-mat. nauk. Minsk, 1985; Unpublished manuscript, VINITI, 09.08.85, No. 5888–85 dep [in Russian].Google Scholar
  253. [36]
    Akulich, F. E. Ob Odnoi Parametricheskoi Transportnoi Zadache na Uzkie Mesta s Ogranichennymi Propusknymi Sposobnostjami Kommunikatzii (On One Parametric Bottleneck Transportation Problem with Limited Capacities of Communications). Izd. IM AN BSSR (Institute of Mathematics, Belorussia Academy of Sciences), Preprint, 1987; No. 10/280 [in Russian].Google Scholar
  254. [37]
    Stancu, M. I. M., and Tigan, S. The stochastic bottleneck transportation problem. L’Analyse Numerique et la Theorie de l’Approximation. 1985; 14, No. 2: 153–158.MATHGoogle Scholar
  255. [38]
    Daduna, I. “Mengenabhangige transportzeiten bei Bottleneck–Transportproblemen.” In VII Symposium on Operations Research, Hochschule, St. Gallen. Aug. 19–21, 1982. Proc. Sekt. 1–3, Konigstein/Ts., 1983; 189–200.Google Scholar
  256. [39]
    Voolis, V. I., and Sherman, Yu. S. Decomposition method for solving large transportation problems. Ekonomika i matematicheskie metody. 1985; XXI, No. 2: 304–314 [in Russian].Google Scholar
  257. [40]
    Avram-Nitchi, R. “Some remarks about using list management in transportation problem.” In Preprint: Babes-Bolyai University Faculty Mathematics Research Seminar. 1987; No. 6: 79–84.MathSciNetGoogle Scholar
  258. [41]
    Avrav-Nitchi, R. “The solving of cost transportation problem (CTP) using primal algorithms based on triple lists.” In Preprint: Babes-Bolyai University Faculty Mathematics Research Seminar. 1988; No. 6: 119–126.Google Scholar
  259. [42]
    Lovetskii, S. E., and Melamed, I. I. “Primal simplex method for maximum dynamic flow search in a transportation network.” In Trudy MILT (Collected Works of Moscow Institute of Transportation Engineers). Moscow: Izd. MIIT (Moscow Institute of Transportation Engineers), 1988; 75–85 [in Russian].Google Scholar
  260. [43]
    Kim, K. V., and Cherkasskii, B. V. “A program for solving multicommodity transportation problem.” In Algoritmy Reschenija Setevykh Zadach. Sbornik Trudov (Network Problems Solution Algorithms. Collected works). Moscow: Izd. TsEMI AN SSSR (Central Economic-Mathematical Institute, USSR Academy of Sciences ), 1984; 6–24 [in Russian].Google Scholar
  261. [44]
    Kim, K. V. An inverse matrix algorithm for solving a transportation problem with additional constraints. Ekonomika i matematicheskie metody. 1967; III: 588–592 [in Russian].Google Scholar
  262. [45]
    Bradley, G. H., Brown, G. G., and Graves, G. W. Design and implementation of large scale primal transshipment algorithms. Management Science. 1977; 24, No. 1: 1–34.MATHCrossRefGoogle Scholar
  263. [46]
    Pilipchuk, L. A. “A solution algorithm for a generalized transportation problem with additional constraints.” In Konstruktivnaja Teorija Ekstremal’nykh Zadach (Constructive Theory of Extreme Problems). Minsk: Izd. BGU (Belorussia State University), 1984; 35–44 [in Russian].Google Scholar
  264. [47]
    Finke, G., and Rock, H. “A primal algorithm for a class of minimax network flow problems.” In VII Symposium on Operations Research, Hochschule, St. Gallen, Aug$119–21, 1982. Proc. Sekt. 1–3. Konigstein/Ts, 1983; 221–232.Google Scholar
  265. [48]
    Gambarov, L. A. On one decomposition method of a multicommodity transportation problem with intermediate nodes. Ekonomika i matematicheskie metody. 1987; 23, No. 1: 165–168 [in Russian].MathSciNetGoogle Scholar
  266. [49]
    Schmidt, G. A fertilizer transportation problem. Zietschrift fuer Operations Research. 1986; 30, No. 5: 135–145.Google Scholar
  267. [50]
    Schreier, H. Eine Variante zur Uberprufung eines Losbarkeitskriteriums fur das bilansierte Mehrsortentransportproblem. Seminarberichte Humbolt-Universitat, Berlin, Sektion Mathematik. 1986; No. 85: 108–117.MathSciNetMATHGoogle Scholar
  268. [51]
    Pilipchuk, L. A. Zadacha Optimizatzii Neodnorodnogo (Dvukhproductovogo) Potoka na Seti s Vsaimosvjazju Razlichnykh Productov (An optimization problem of a nonhomogeneous (two-commodity) flow on a network with various commodities relations). Vestnik Belorusskogo Universiteta. Seriya 1: Fizika, Matematika, Mekhanika. Minsk, 1988; Unpublished manuscript, VINITI, 13.01.88, No. 206B88 [in Russian].Google Scholar
  269. [52]
    Ohuchi, A., and Kaji, I. Lagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costs. Networks. 1984; 14, No. 4: 515–530.MathSciNetMATHCrossRefGoogle Scholar
  270. [53]
    Movshovich, S. M. Sequential projections and coordinatewise minimization in the solution of convex programming problems. Matekon. Spring, 1976; 13, No. 3: 86–96.Google Scholar
  271. [54]
    Pilipchuk, L. A. On dual methods of two-commodity transportation problem solution. Vestnik Belorusskogo Universiteta. Seriya 1: Fizika, Matematika, Mekhanika. 1984; No. 3: 52–54 [in Russian].MathSciNetGoogle Scholar
  272. [55]
    Rumchev, V. G., and Mateev, L. N. “Solving the dynamic transportation problem in network formulation by the time-extended network method.” In Godichnoe VUZ. Prilozhenie matematiki (Annual Report of Universities. Applications of Mathematics). 1983/1984; 19 No. 3: 149–161 [in Russian].Google Scholar
  273. [56]
    Lovetskii, S. E., and Melamed, I. I. Dynamic network flows. Automation and Remote Control. 1987; 48, No. 11: 1417–1434.MathSciNetGoogle Scholar
  274. [57]
    Aronson, J. E., Morton, T. E., and Thompson, G. L. A forward simplex method for staircase linear programs Management Science. 1985; 31, No. 6: 664–679.MathSciNetMATHCrossRefGoogle Scholar
  275. [58]
    Kozlov, P. A., Milovidov, S. P., and Popov, A. T. Optimization of technological transport work in industrial systems. Ekonomika i matematicheskie metody. 1986; XXII, No. 4: 697–703 [in Russian].Google Scholar
  276. [59]
    Batishchev, D. I., and Kogan, D. I. Transportation problems with linear estimates of participants. Soviet Journal of Computer and Systems Sciences (Formerly Engineering Cybernetics). 1987; 25, No. 3: 93–99.MathSciNetMATHGoogle Scholar
  277. [60]
    Yemelyanov, S. V., Borisov, V. I. Malevich, A. A., and Cherkashin, A. M. Modeli i Metody Vektornoi Optimizatzii. Itogi Nauki i Tekhniki. Seriya Tekhnicheskaya Kibernetika (Models and Methods of Vector Optimization. Frontiers of Science and Technology. Series Engineering Cybernetics). Moscow: VINITI, 1973; 5 [in Russian].Google Scholar
  278. [61]
    Thompson, G. L. Solution of constrained generalized transportation problems using the pivot and probe algorithm. Computers and Operations Research. 1986; 13, No. 1: 1–9.MATHCrossRefGoogle Scholar
  279. [62]
    Zenios, S. A., and Mulvey, J. M. A distributed algorithm for convex network optimization problems. Parallel Computing. 1988; 6, No. 1: 45–56.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alexander S. Belenky

There are no affiliations available

Personalised recommendations