Skip to main content

Regulation of Differentiated Properties of Oligodendrocytes

  • Chapter

Part of the book series: Advances in Neurochemistry ((ANCH,volume 5))

Abstract

How a given eukaryotic cell achieves its ultimate differentiated state from primitive embryonic origins and how the expression of specific gene products is regulated are two of the fundamental and, as yet, unresolved issues in biology. Despite extraordinary advances in our knowledge of primary nucleotide sequences and genomic organization, we cannot at present predict or explain the various patterns of gene expression from one cell type to another. Most research in this area has been confined to the study of highly specialized systems in which large amounts of a particular protein are made (Shapiro, 1982). In brain, the search for specific, identifiable proteins has largely concentrated on neuronal elements. However, in the past decade, glial physiology has gained a more prominent role in neurobiology. An appreciation of how certain genes are regulated in the oligodendrocyte has become increasingly important to our understanding of the role these proteins play in a number of normal and pathological processes in the CNS. Of particular interest is the myelin-forming function of the oligodendrocyte in health and disease. The genotypic and phenotypic alterations that occur during glial neoplasia can be interpreted with respect to changes in these differentiated oligodendrocyte properties. That oligodendrocytes are now recognized as capable of secreting soluble protein factors that influence the morphology and physiology of neuronal elements underscores an even greater need to know whether and how these factors are themselves subject to regulatory signals (Arenander and de Vellis, 1982). Finally, the temporal patterns of the expression of these proteins from embryonic development onward will aid in the tracing of oligodendrocyte-cell lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A. J., Epps, J., Charron, L., and Bray, G. M., 1976, Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: Quantitative microscopy and radioautography, Brain Res. 104: 1–20.

    PubMed  CAS  Google Scholar 

  • Arenander, A. T., and de Vellis, J., 1980, Glial-released proteins in clonal cultures and their modulation by hydrocortisone, Brain Res. 200: 401–419.

    PubMed  CAS  Google Scholar 

  • Arenander, A. T., and de Vellis, J., 198la, Glial-released proteins. Il. Two-dimensional electrophoretic identification of proteins regulated by hydrocortisone, Brain Res. 224: 105–116.

    Google Scholar 

  • Arenander, A. T., and de Vellis, J., 1981 b, Glial-released proteins. III. Influence on neuronal morphological differentiation, Brain Res. 224: 117–127.

    Google Scholar 

  • Arenander, A. T., and de Vellis, J., 1982, Glial-released proteins in neural intercellular communication: Molecular mapping, modulation and influence on neuronal differentiation, in: Proteins in the Nervous System: Structure and Function (B. Haber, J. R. Perez-Polo, and J. D. Coulter, eds.), pp. 243–269, Alan R. Liss, New York.

    Google Scholar 

  • Arnason, B. G. W., Yu, R. C., Amico, L., Arenander, A., and de Vellis, J., 1981, The effect of a glial cell released factor on spinal cord neuron growth and its modulation by steroids, Soc. Neurosci. Symp. 11 (abstr. 179.10).

    Google Scholar 

  • Bachrach, U., 1973, Function of Naturally Occurring Polyamines, Academic Press, New York, 21.

    Google Scholar 

  • Bachrach, U., 1975, Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 72: 3087–3091.

    PubMed  CAS  Google Scholar 

  • Balazs, R., Brookshank, B. W. L., Davison, A. L., Eayrs, J. T., and Wilson, D. A., 1969, The effect of neonatal thyroidectomy on myelination in the rat brain, Brain Res. 15: 219–232.

    PubMed  CAS  Google Scholar 

  • Barde, Y. A., Lindsay, R. M., Monard, D., and Thoenen, H., 1978, New factor released by cultured glioma cells supporting survival and growth of sensory neurons, Nature (London) 274: 818.

    CAS  Google Scholar 

  • Barde, Y. A., Edgar, D., and Thoenen, H., 1980, Sensory neurons in culture: Changing requirements for survival factors during embryonic development, Proc. Natl. Acad. Sci. U.S.A. 77: 1199–1203.

    PubMed  CAS  Google Scholar 

  • Baxter, J., Rousseau, G., Benson, H., Garcia, R., Ito, J., and Tomkins, G., 1972, Role of DNA and specific cytoplasmic receptors in glucocorticoid action, Proc. Natl. Acad. Sci. U.S.A. 69: 1892–1896.

    PubMed  CAS  Google Scholar 

  • Benda, P., 1978, Rodent glial cell lines, in: Dynamic Properties of Glial Cells ( E. Schoffeniels, G. Franck, D. B. Tower, and L. Hertz, eds.), pp. 67–81, Pergamon Press, New York.

    Google Scholar 

  • Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W., 1968, Differentiated rat glial cell strain in tissue culture, Science 161: 350–371.

    Google Scholar 

  • Benda, P., Someda, K., Messer, J., and Sweet, W. H., 1971, Morphological and immunochemical studies of rat glial tumors and conal strains propagated in culture, J. Neurosurg. 34: 310–323.

    PubMed  CAS  Google Scholar 

  • Bennett, K., and de Vellis, J., 1977, Reversible inhibition of the norepinephrine induction of lactate dehydrogenase by cytochalasin B in rat glial C6 cells, J. Cell. Physiol. 93: 261–268.

    PubMed  CAS  Google Scholar 

  • Bennett, K., McGinnis, J. F., and de Vellis, J., 1977, Reversible inhibition of the hydrocortisone induction of glycerol phosphate dehydrogenase by cytochalasin B in rat glial C6 cells, J. Cell. Physiol. 93: 247–260.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., Sarlieve, L. L., Rao, G. S., and Pieringer, R., 1979, Investigations on myelination in vitro: Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 254: 9342–9346.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., Rao, G. S., and Pieringer, R. A., 1981a, Investigations on myelination in vitro: Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 256: 1167–1171.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., Shankar, G., and Pieringer, R. A., 198 lb, Investigations of myelination in vitro: Regulation of 2’,3’-cyclic nucleotide 3’-phosphohydrolase by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Neurochem. 37: 695–701.

    Google Scholar 

  • Bhat, S., and Pfeiffer, S. E., 1982, Myelinogenic gene expression intrinsic to cultured oligodendrocytes, Trans. Am. Soc. Neurochem. 13: 154.

    Google Scholar 

  • Bhat, S., Barbarese, E., and Pfeiffer, S. E., 1981, Requirement for nonoligodendrocyte cell signals for enhanced myelinogenic gene expression in long-term cultures of purified rat oligodendrocytes, Proc. Natl. Acad. Sci. U.S.A. 78: 1283–1287.

    PubMed  CAS  Google Scholar 

  • Bissell, M. G., Rubinstein, L. J., Bignami, A., and Herman, M. M., 1974, Characteristics of the rat C-6 glioma maintained in organ culture systems: Production of glial fibrillary acidic protein in the absence of gliofibrillogenesis, Brain Res. 82: 77–89.

    PubMed  CAS  Google Scholar 

  • Borg, J., Bakar, V. J., and Mandel, P., 1979, Effect of cyclic nucleotides on the high affinity uptake of L-glutamate and taurine in glial and neuroblastoma cells, Brain Res. 166: 113120.

    Google Scholar 

  • Bourre, J. M., Chanez, C., Dumont, O., and Flexor, M. A., 1981, 5-Nucleotidase Na+, K+-ATPase in nervous tissue from demyelinating mouse, Trans. Am. Soc. Neurochem. 12: 80.

    Google Scholar 

  • Breen, G. A. M., and de Vellis, J., 1974, Regulation of glycerol phosphate dehydrogenase by hydrocortisone in dissociated rat cerebral cell cultures, Dev. Biol. 41: 255–266.

    PubMed  CAS  Google Scholar 

  • Breen, G. A. M., and de Vellis, J., 1975, Regulation of glycerol phosphate dehydrogenase by hydrocortisone in rat brain explants, Exp. Cell Res. 91: 159–169.

    PubMed  CAS  Google Scholar 

  • Breen, G. A. M., McGinnis, J. F., and de Vellis, J., 1978, Modulation of the hydrocortisone induction of glycerol phosphate dehydrogenase by N6,02-dibutyryl cyclic AMP, norepinephrine and isobutylmethylxanthine in rat brain cell cultures, J. Biol. Chem. 253: 2554–2562.

    PubMed  CAS  Google Scholar 

  • Bressler, J. P., Cole, R., and de Vellis, J., 1980, Cell culture systems to study glial transformation, in: Mechanisms of Toxicity and Hazard Evaluation ( B. Holmstedt, R. Lavwerys, M. Mercier, and M. Roberfroid, eds.), pp. 187–197, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Brown, P. C., and Papaconstantinou, J., 1979, Coordinated modulation of albumin synthesis and mRNA levels in cultured hepatoma cells by hydrocortisone and cyclic AMP analogs, J. Biol. Chem. 254: 9379–9384.

    PubMed  CAS  Google Scholar 

  • Browning, E. T., and Nicklas, W. J., 1982, Induction of glutamine synthetase by dibutyryl cyclic AMP in C-6 glioma cells, J. Neurochem. 39: 336–341.

    PubMed  CAS  Google Scholar 

  • Burnham, P., Raiborn, C., and Varon, S., 1972, Replacement of nerve growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons, Proc. Natl. Acad. Sci. U.S.A. 69: 3556–3560.

    PubMed  CAS  Google Scholar 

  • Burton, H., and Bunge, R. P., 1975, A comparison of the uptake and release of [3H]-norepinephrine in rat autonomic and sensory ganglia in tissue culture, Brain Res. 97: 157–162.

    PubMed  CAS  Google Scholar 

  • Cahn, R. D., Kaplan, N. O., Levine, L., and Zwilling, E., 1962, Nature and development of lactic dehydrogenases, Science 136: 962–969.

    PubMed  CAS  Google Scholar 

  • Cam, Y., Sensenbrenner, M., Ledig, M., and Mandel, P., 1977, Partial characterization of a brain extract that stimulates nerve cell differentiation in culture, Neuroscience 2: 801–805.

    PubMed  CAS  Google Scholar 

  • Cammer, W., and Zimmerman, T. R., 1981, Rat brain 5’-nucleotidase: Developmental changes in myelin and activities in subcellular fractions and myelin subfractions, Brain Res. 227: 381–389.

    PubMed  CAS  Google Scholar 

  • Cammer, W., Sirota, S. R., Zimmerman, T. R., and Norton, W. T., 1980, 5’-Nucleotidase in rat brain myelin, J. Neurochem. 35: 367–373.

    Google Scholar 

  • Casper, R., Vernadakis, A., and Timiras, P. S., 1967, Influence of estradiol and cortisol on lipids and cerebrosides in the developing brain and spinal cord of the rat, Brain Res. 5: 524–526.

    PubMed  CAS  Google Scholar 

  • Cawley, D. B., Herschman, H. R., Gilliland, D. G., and Collier, R. J., 1980, EGF-ricin A is a potent toxin while EGF-diphtheria fragment A is nontoxic, Cell 22: 563–570.

    PubMed  CAS  Google Scholar 

  • Chou, C. H. J., Chou, F., Peacocke, N., Eltzroth, D., Tourtellotte, W., and Kibler, R. F., 1981, CNPase activity of multiple sclerosis brains, Trans. Am. Soc. Neurochem. 12: 91.

    Google Scholar 

  • Cicero, T. J., Cowan, W. M., Moore, B. W., and Suntzeff, V., 1970, The cellular localization of two brain specific proteins, S–100 and 14–3–2, Brain Res. 18: 25 – 34.

    PubMed  CAS  Google Scholar 

  • Ciment, G., and de Vellis, J., 1978, Cellular interactions uncouple ß-adrenergic receptors from adenylate cyclase, Science 202: 765–768.

    PubMed  CAS  Google Scholar 

  • Ciment, G., and de Vellis, J., 1982, Cell surface-mediated cellular interactions: Effects of B104 neuroblastoma surface determinants on C6 glioma cellular properties, J. Neurosci. Res. 7: 371–386.

    PubMed  CAS  Google Scholar 

  • Claisse, P. J., and Roscoe, J. P., 1976, The inducibility of glycerol phosphate dehydrogenase in two rat-glial tumors, Brain Res. 109: 423–425.

    PubMed  CAS  Google Scholar 

  • Cousin, M. A., Lando, D., and Moguilewsky, M., 1982, Ornithine decarboxylase induction by glucocorticoids in brain and liver of adrenalectomized rats, J. Neurochem. 38: 1296–1304.

    PubMed  CAS  Google Scholar 

  • Dalal, K. B., Vulcana, T., Timiras, P. S., and Einstein, E. R., 1971, Regulatory role of thyroxine on myelogenesis in the developing rat, Neurobiology 1: 211–224.

    CAS  Google Scholar 

  • Davidson, R. L., and Benda, P., 1970, Regulation of specific functions of glial cells in somatic hybrids. II. Control of inducibility of glycerolphosphate dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 67: 1870–1877.

    PubMed  CAS  Google Scholar 

  • Dawson, G., and Kearns, S. M., 1978, Mechanism of action of hydrocortisone potentiation of sulfogalactosylceramide synthesis in mouse oligodendroglioma cell lines, J. Biol. Chem. 254: 163–167.

    Google Scholar 

  • Derda, D. F., Miles, M. F., Schweppe, J. S., and Jungmann, R. A., 1980, Cyclic AMP regulation of lactate dehydrogenase, J. Biol. Chem. 255: 11112–11121.

    PubMed  CAS  Google Scholar 

  • De Vellis, J., 1973, Mechanisms of enzymic differentiation in the brain and in cultured cells, in: Developing and Aging in the Nervous System ( M. Rockstein, ed.), pp. 171–198, Academic Press, New York.

    Google Scholar 

  • De Vellis, J., and Brooker, G., 1973, Induction of enzymes by glucocorticoids in a rat glial cell line, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 231–245, Plenum Press, New York.

    Google Scholar 

  • De Vellis, J., and Brooker, G., 1974, Reversal of catecholamine refractoriness by inhibitors of RNA and protein synthesis, Science 186: 1221–1223.

    Google Scholar 

  • De Vellis, J., and Inglish, D., 1968, Hormonal control of glycerolphosphate dehydrogenase in the rat brain, J. Neurochem. 15: 1061–1070.

    PubMed  Google Scholar 

  • De Vellis, J., and Inglish, D., 1969, Effect of cortisol and epinephrine on the biochemical differentiation of cloned glial cells in culture and of the developing rat brain, in: Transactions of the 2nd International Meeting Society of Neurochemistry, pp. 151–152, Tamburini, Milan.

    Google Scholar 

  • De Vellis, J., and Inglish, D., 1973, Age-dependent changes in the regulation of glycerolphosphate dehydrogenase in the rat brain and in a glial cell line, Prog. Brain Res. 40: 321–330.

    PubMed  Google Scholar 

  • De Vellis, J., Schjeide, O. A., and Clemente, C. D., 1967, Protein synthesis and enzymic patterns in the developing brain following head X-irradiation of newborn rats, J. Neurochem. 14: 499–511.

    PubMed  Google Scholar 

  • De Vellis, J., Inglish, D., Cole, R., and Molson, J., 1971, Effects of hormones on the differentiation of cloned lines of neurons and glial cells, in: Influence of Hormones on the Central Nervous System ( D. Ford, ed.), pp. 25–39, S. Karger, Basel.

    Google Scholar 

  • De Vellis, J., McEwen, B. S., Cole, R., and Inglish, D., 1974, Relations between glucocorticoid nuclear binding, cytosol receptor and enzyme induction in a rat glial cell line, J. Steroid Biochem. 5: 392–393.

    Google Scholar 

  • De Vellis, J., McGinnis, J. F., Breen, G. A. M., Leveille, P., Bennett, K., and McCarthy, K. D., 1977, Hormonal effects on differentiation in neural cultures, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 485–511, Academic Press, New York.

    Google Scholar 

  • Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor—cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 70: 1442–1446.

    PubMed  CAS  Google Scholar 

  • Edgar, D., Barde, Y. A., and Thoenen, H., 1979, Induction of fiber outgrowth and choline acetyltransferase in PC12 pheochromocytoma cells by conditioned media from glial cells and organ extracts, Exp. Cell Res. 121: 353–361.

    PubMed  CAS  Google Scholar 

  • Ernest, M. J., and Feigelson, P., 1978, Increase in hepatic tyrosine aminotransferase in RNA during enzyme induction by N6,02 2’-dibutryl cyclic AMP, J. Biol. Chem. 253: 319–322.

    PubMed  CAS  Google Scholar 

  • Everly, J. L., Quarles, R. H., and Brady, R. O., 1977, Proteins and glycoproteins in myelin purified from the developing bovine and human central nervous systems, J. Neurochem. 28: 95–101.

    PubMed  CAS  Google Scholar 

  • Everse, J., and Kaplan, N. O., 1973, Lactate dehydrogenases: Structure and function, Adv. Enzymol. Relat. Areas Mol. Biol. 37: 61–133.

    PubMed  CAS  Google Scholar 

  • Flynn, T. J., Deshmukh, D. S., and Pieringer, R. A., 1977, Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain, J. Biol. Chem. 252: 5864–5870.

    PubMed  CAS  Google Scholar 

  • Fry, J. M., Lehrer, G. M., and Bernstein, M. B., 1972, Sulfatide synthesis: Inhibition by experimental allergic encephomyelitis serum, Science 175: 192–194.

    PubMed  CAS  Google Scholar 

  • Gibbs, J. B., Shu, C.-Y., Terasaki, W. L., and Brooker, G., 1980, Calcium and microtubule dependence for increased ornithine decarboxylase EC-4.1.1.17 activity stimulated by beta adrenergic agonists dibutyryl cyclic AMP or serum in a rat astrocytoma cell line, Proc. Natl. Acad. Sci. U.S.A. 77: 995–999.

    PubMed  CAS  Google Scholar 

  • Gilliland, D. G., Steplewski, R. J., Collier, R. J., Mitchell, K. F., Chang, T. H., and Koprowski, H., 1980, Antibody-directed cytotoxic agents: Use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 77: 4539–4543.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G., and Nirenberg, M., 1971, Effect of catecholamines on the cAMP concentrations of clonal satellite cells of neurons, Proc. Natl. Acad. Sci. U.S.A. 68: 2165–2168.

    PubMed  CAS  Google Scholar 

  • Goertz, B., 1979, Effect of polyamines on cell-free protein synthesizing systems from rat cerebral cortex, cerebellum, and liver, Brain Res. 173: 125–135.

    PubMed  CAS  Google Scholar 

  • Gopfert, E., Pytlik, S., and Debuch, H., 1980, 2’,3“-Cyclic nucleotide 3’-phosphohydrolase and lipids of myelin from multiple sclerosis and normal brains, J. Neurochem. 34: 732–739.

    Google Scholar 

  • Gorski, R. A., 1971, Steroid hormones and brain function: Progress, principles and problems, in: Steroid Hormones and Brain Function ( C. H. Sawyer and R. A. Gorski, eds.), pp. 1–26, University of California Press, Los Angeles.

    Google Scholar 

  • Grobstein, C., 1968, Developmental significance of interface materials in epithelio—mesenchymal interactions, in: Epithelial—Mesenchymal Interactions ( R. Fleischmajer and R. E. Billingham, eds.), pp. 173–176, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Gysin, R., Moore, B. W., Proffitt, R. T., Devel, T. F., Caldwell, K., and Glaser, L., 1980, Regulation of the synthesis of S-100 protein in rat glial cells, J. Biol. Chem. 255: 1515–1520.

    PubMed  CAS  Google Scholar 

  • Hamburgh, M., 1966, Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis in vitro, Dev. Biol. 13: 15–30.

    PubMed  CAS  Google Scholar 

  • Harrison, J. J., Suter, P., Suter, S., and Jungmann, R. A., 1980, Isoproterenol induced selective phosphorylative modification in vivo of rat C6 glioma cell histones, Biochem. Biophys. Res. Commun. 96: 1253–1260.

    PubMed  CAS  Google Scholar 

  • Herschkowitz, N., Bologa, L., and Siegrist, H. P., 1982, Characterization of mouse oligodendrocytes during development, Trans. Am. Soc. Neurochem. 13: 173.

    Google Scholar 

  • Ikeno, T., and Guroff, G., 1979, The effect of vasopressin on the activity of ornithine decarboxylase in rat brain and liver, J. Neurochem. 33: 973–975.

    PubMed  CAS  Google Scholar 

  • Ikeno, T., MacDonnell, P. C., Nagaiah, K., and Guroff, G., 1978, The permissive effect of cortical steroids on the induction of brain ornithine decarboxylase by nerve growth factor, Biochem. Biophys. Res. Commun. 82: 957–963.

    PubMed  CAS  Google Scholar 

  • Ivarie, R. D., and O’Farrell, P. H., 1978, The glucocorticoid domain: Steroid-mediated changes in the rate of synthesis of rat hepatoma proteins, Cell 13: 41–55.

    PubMed  CAS  Google Scholar 

  • Iverson, L. L., Nicoll, R. A., and Vale, W. W., 1978, Neurobiology of peptides, Neurosci. Res. Program Bull. 16: 214–370.

    Google Scholar 

  • Iynedjian, P. B., and Hanson, R. W., 1977, Increase in level of functional mRNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3:5’-monophosphate, J. Biol. Chem. 252: 655–662.

    PubMed  CAS  Google Scholar 

  • Jard, S., Premont, J., and Benda, J., 1972, Adenylate cyclase, phosphodiesterase and protein kinase of rat glial cells in culture, FEBS Lett. 26: 344–348.

    PubMed  CAS  Google Scholar 

  • Jungmann, R. A., and Kranias, E. G., 1977, Minireview: Nuclear phosphoprotein kinases and the regulation of gene expression, Int. J. Biochem. 8: 819–830.

    CAS  Google Scholar 

  • Juurlinck, B. H. J., Schousboe, A., Jorgensen, O. D., and Hertz, L., 1981, Induction by hydrocortisone of glutamine synthetase in mouse primary astrocyte cultures, J. Neurochem. 36: 136–142.

    Google Scholar 

  • Kakiuchi, S., and Rall, T. W., 1968, The influence of chemical agents on the accumulation of adenosine 3’,5’-phosphate in slices of rabbit cerebellum, Mol. Pharmacol. 4: 367–378.

    PubMed  CAS  Google Scholar 

  • Kato, T., Chiu, T. C., Lim, R., Troy, S. S., and Turiff, D. E., 1979, Multiple molecular forms of glial maturation factor, Biochim. Biophys. Acta 579: 216–227.

    PubMed  CAS  Google Scholar 

  • Kemel, M. L., Gauchy, C., Glowinski, J., and Besson, M. J., 1979, Spontaneous and potassium evoked release of 3H-GABA newly synthesized from 3H-glutamine in slices of the rat sub-stantia nigra, Life Sci. 24: 2139–2150.

    PubMed  CAS  Google Scholar 

  • Kim, S. U., and Pleasure, D. E., 1978a, Tissue culture analysis of neurogenesis: Myelination and synapse formation are retarded by serum deprivation, Brain Res. 145: 15–25.

    PubMed  CAS  Google Scholar 

  • Kim, S. U., and Pleasure, D. E., 1978b, Tissue culture analysis of neurogenesis: Lipid-free medium retards myelination in mouse spinal cord cultures, Brain Res. 157: 206–211.

    PubMed  CAS  Google Scholar 

  • Kleinsmith, L. J., 1975, Phosphorylation of non-histone proteins in the regulation of chromosome structure and function, J. Cell. Physiol. 85: 459–476.

    PubMed  CAS  Google Scholar 

  • Kohler, G., and Milstein, C., 1975, Continuous culture of fused cells secreting antibody of predefined specificity, Nature (London) 256: 495–497.

    CAS  Google Scholar 

  • Kohler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6: 511–519.

    PubMed  CAS  Google Scholar 

  • Kovacevic, Z., and Morris, H. P., 1972, The role of glutamine in the oxidative metabolism of malignant cells, Cancer Res. 32: 326–333.

    PubMed  CAS  Google Scholar 

  • Kozak, L. P., 1972, Genetic control of a-glycerolphosphate dehydrogenase in mouse brain, Proc. Natl. Acad. Sci. U.S.A. 69: 3170–3174.

    PubMed  CAS  Google Scholar 

  • Kozak, L. P., 1979, Coaggregation with tumor cells inhibits expression by cerebellar cells of the adult isozyme locus, Gdc-1, Dev. Biol. 68: 407–421.

    PubMed  CAS  Google Scholar 

  • Kozak, L. P., and Erdelsky, K. J., 1975, The genetics and developmental regulation of L-glycerol3-phosphate dehydrogenase, J. Cell. Physiol. 85: 437–448.

    PubMed  CAS  Google Scholar 

  • Kremzner, L. T., Barrett, R. E., and Terano, M. J., 1970, Polyamine metabolism in the central and peripheral nervous system, Ann. N.Y. Acad. Sci. 171: 735–748.

    CAS  Google Scholar 

  • Kreutzberg, G. W., Barron, K. D., and Schubert, P., 1978, Cytochemical localization of 5’-nucleotide in glial plasma membranes, Brain Res. 158: 247–257.

    PubMed  CAS  Google Scholar 

  • Kumar, S., and de Vellis, J., 1981, Induction of lactate dehydrogenase by dibutyryl cAMP in primary cultures of central nervous tissue is an oligodendroglial marker, Dev. Brain Res. 1: 303–307.

    CAS  Google Scholar 

  • Kumar, S., McGinnis, J. F., and de Vellis, J., 1980, Catecholamine regulation of lactate dehydrogenase in rat brain cell culture: Norepinephrine differentially increases the rate of synthesis of the individual subunits in the C6 glial tumor cell line, J. Biol. Chem. 255: 2315–2321.

    PubMed  CAS  Google Scholar 

  • Kurihara, T., and Tsukada, Y., 1968, 2’,3’-Cyclic nucleotide 3’-phosphohydrolase in the developing chick brain and spinal cord, J. Neurochem. 15: 827–832.

    Google Scholar 

  • Kurihara, T., Nussbaum, J. L., and Mandel, P., 1970, 2’,3’-Cyclic nucleotide 3’-phosphohydrolase in brains of mutant mice with deficient myelination, J. Neurochem. 17: 993–997.

    Google Scholar 

  • Laatsch, R. H., 1962, Glycerol phosphate dehydrogenase activity of developing rat in the central nervous system, J. Neurochem. 9: 487–492.

    PubMed  CAS  Google Scholar 

  • Labourdette, G., and Mandel, P., 1978, S-100 protein in monolayer cultures of glial cells: Basal level in primary and secondary cultures, Biochem. Biophys. Res. Commun. 85: 1307–1313.

    PubMed  CAS  Google Scholar 

  • Labourdette, G., and Marks, A., 1975, Synthesis of S-100 protein in monolayer cultures of rat glial cells, Eur. J. Biochem. 58: 73–79.

    PubMed  CAS  Google Scholar 

  • Labourdette, G., Mahony, J. B., Brown, I. R., and Marks, A., 1977, Regulation of synthesis of a brain-specific protein in monolayer cultures of clonal rat glial cells, Eur. J. Biochem. 81: 591–597.

    PubMed  CAS  Google Scholar 

  • Laerum, O. D., and Rajewsky, M. F., 1975, Neoplastic transformation of fetal rat brain cells in culture after exposure to ethylnitrosourea in vivo, J. Natl. Cancer Inst. 55: 1177–1188.

    PubMed  CAS  Google Scholar 

  • Landis, S. C., and Keefe, D., 1980, Development of cholinergic sympathetic innervation of eccrine sweat glands in rat footpad, Soc. Neurosci. Symp. 10 (abstr. 131.20).

    Google Scholar 

  • Lawrence, T. S., Beers, W. H., and Gilula, N. B., 1978, Transmission of hormonal stimulation by cell-to-cell communication, Nature (London) 272: 501–506.

    CAS  Google Scholar 

  • LeDourain, N. M., 1980, The ontogeny of the neural crest in avian embryo chimaeras, Nature (London) 286: 663–669.

    Google Scholar 

  • LeDourain, N. M., and Teillet, M. A. M., 1974, Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neuroectodermal mesenchymal derivatives using a biological cell marking technique, Dev. Biol. 41: 162–184.

    Google Scholar 

  • LeDourain, N. M., Teillet, M. A., Ziller, C., and Smith, J., 1978, Adrenergic differentiation of cells of the cholinergic ciliary and Remak ganglia in avian embryo after in vivo transplantation, Proc. Natl. Acad. Sci. U.S.A. 75: 2030–2034.

    Google Scholar 

  • Leveille, P. J., McGinnis, J. F., Maxwell, D. S., and de Vellis, J., 1980, Immunocytochemical localization of glycerol-3-phosphate dehydrogenase in rat oligodendrocytes, Brain Res. 196: 287–305.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., 1976, The nerve growth factor: Its role in growth, differentiation, and function of the sympathetic adrenergic neuron, Prog. Brain Res. 45: 235–258.

    PubMed  CAS  Google Scholar 

  • Lewis, M. E., Lakshmanan, J., Nagiah, K., MacDonnel, P. C., and Guroff, G., 1978, Nerve growth factor increases activity of ornithine decarboxylase in rat brain, Proc. Natl. Acad. Sci. U.S.A. 75: 1021–1023.

    PubMed  CAS  Google Scholar 

  • Lim, R., and Mitsunobu, K., 1974, Brain cells in culture: Morphological transformation by a protein, Science 185: 63–66.

    PubMed  CAS  Google Scholar 

  • Lim, R., and Mitsonobu, K., 1975, Partial purification of a morphological transforming factor from pig brain, Biochem. Biophys. Acta 400: 200–207.

    PubMed  CAS  Google Scholar 

  • Lim, R., Mitsonobu, K., and Li, W. K. P., 1973, Maturation stimulating effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture, Exp. Cell Res. 79: 243–246.

    PubMed  CAS  Google Scholar 

  • Lim, R., Nagawara, S., Anason, B., Barry, G. W., and Turtiff, D. E., 1981, Effect of glial maturation factor on glioma cells, Trans. Am. Soc. Neurochem. 12: 225.

    Google Scholar 

  • Linser, P., and Moscona, A. A., 1979, Induction of glutamine synthetase in embryonic neural retina: Localization in Muller fibers and dependence on cell interactions, Proc. Natl. Acad. Sci. U.S.A. 76: 6476–6480.

    PubMed  CAS  Google Scholar 

  • Linser, P. J., and Moscona, A. A., 1981, Induction of glutamine synthetase in embryonic neural retina: Its suppression by the gliatoxic agent a-aminoadipic acid, Dev. Brain Res. 1: 103–120.

    CAS  Google Scholar 

  • Lund, P., 1970, A radiochemical assay for glutamine synthetase, and activity of the enzyme in rat tissues, Biochem. J. 118: 35–39.

    PubMed  CAS  Google Scholar 

  • Mains, R. E., and Patterson, P. H., 1973, Primary cultures of dissociated sympathetic ganglia. I. Establishment of long-term growth in culture and studies of differentiated properties, J. Cell Biol. 59: 361–366.

    PubMed  CAS  Google Scholar 

  • Maltese, W. A., 1982, 3-Hydroxy-3-methylglutaryl-CoA reductase in human intracranial tumors, Trans. Am. Soc. Neurochem. 13: 158.

    Google Scholar 

  • Maltese, W. A., and Volpe, J. J., 1979, Induction of an oligodendroglial enzyme in C6 glioma cells maintained at high density or in serum-free medium, J. Cell. Physiol. 101: 459–470.

    PubMed  CAS  Google Scholar 

  • Mannino, R. J., and Burger, M. M., 1975, Growth inhibition of normal cells by succinylated concanavalin A, Nature (London) 256: 19–22.

    CAS  Google Scholar 

  • Marks, A., and Labourdette, G., 1977, Succinyl concanavalin A stimulates and antimicrotubular drugs inhibit the synthesis of a brain-specific protein in rat glial cells, Proc. Natl. Acad. Sci. U.S.A. 74: 3855–3856.

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A., Bell, K. P., and Norenberg, M. D., 1977, Glutamine synthetase: Glial localization in brain, Science 195: 1356–1358.

    PubMed  CAS  Google Scholar 

  • Matthieu, J. M., Honegger, P., Trapp, B. D., Cohen, S. R., and Webster, H. de F., 1978, Myelination in rat brain aggregating cell cultures, Neuroscience 3: 565–572.

    PubMed  CAS  Google Scholar 

  • Matthieu, J. M., Honegger, P., Farrod, P., Gautier, E., and Dolivo, M., 1979, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell cultures, J. Neurochem. 32: 869–881.

    PubMed  CAS  Google Scholar 

  • McCarthy, K. D., and de Vellis, J., 1977, Age dependent changes in neuronal and glial cell markers in cultures from rat cerebral cortex, Trans. Am. Soc. Neurochem. 8: 88.

    Google Scholar 

  • McCarthy, K. D., and de Vellis, J., 1978, Alpha-adrenergic modulation of beta-adrenergic, adenosine and prostaglandin E1 increased adenosine 3’:5’ cyclic monophosphate levels in primary cultures of glia, J. Cyclic Nucleotide Res. 4: 15–26.

    PubMed  CAS  Google Scholar 

  • McCarthy, K. D., and de Vellis, J., 1979, The regulation of adenosine 3’:5’-cyclic monophosphate accumulation in glia by alpha-adrenergic agonists, Life Sci. 24: 639–650.

    PubMed  CAS  Google Scholar 

  • McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–902.

    PubMed  CAS  Google Scholar 

  • McEwen, B. S., Magnus, C., and Wallack, C., 1971, Biochemical studies of corticosterone binding to cell nuclei and cytoplasmic macromolecules in specific regions of the rat brain, in: Steroid Hormones and Brain Function ( C. H. Sawyer and R. A. Gorski, eds.), pp. 247–258, University of California Press, Los Angeles.

    Google Scholar 

  • McGinnis, J. F., and de Vellis, J., 1978, Glucocorticoid regulation in rat brain cell cultures: Hydrocortisone increases the rate of synthesis of glycerol phosphate dehydrogenase in C6 glioma cells, J. Biol. Chem. 253: 8483–8492.

    Google Scholar 

  • McGinnis, J. F., and de Vellis, J., 1981, Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors, Proc. Natl. Acad. Sci. U.S.A. 78: 1288–1292.

    PubMed  CAS  Google Scholar 

  • McMorris, F. A., 1977, Norepinephrine induces glial specific enzyme activity in cultured glioma cells, Proc. Natl. Acad. Sci. U.S.A. 74: 4501–4504.

    PubMed  CAS  Google Scholar 

  • McMorris, F. A., and Sprinkle, T. J., 1982, Mechanism of CNP induction in C6 glioma cells, Trans. Am. Soc. Neurochem. 13: 114.

    Google Scholar 

  • Meyer, J. S., Leveille, P. J., de Vellis, J., Gerlach, J. L., and McEwen, B. S., 1982, Evidence for glucocorticoid target cells in the rat optic nerve: Hormone binding and glycerolphosphate dehydrogenase induction, J. Neurochem. 39: 423–434.

    PubMed  CAS  Google Scholar 

  • Miles, M. F., Hung, P., and Jungmann, R. A., 1981, Cyclic AMP regulation of lactate dehydrogenase, J. Biol. Chem. 256: 12545–12552.

    PubMed  CAS  Google Scholar 

  • Mintz, B., and Ilmensee K., 1975, Normal genetically mosaic mice produced from malignant teratocarcinoma cells, Proc. Natl. Acad. Sci. U.S.A. 72: 3585–3589.

    PubMed  CAS  Google Scholar 

  • Monard, D., Solomon, F., Rentsch, M., and Gysin, R., 1973, Glial-induced morphological differentiation in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 70: 1894–1897.

    PubMed  CAS  Google Scholar 

  • Moore, B. W., 1965, A soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 729–744.

    Google Scholar 

  • Moore, D. M., and Kirksey, A., 1977, The effect of a deficiency of vitamin B-6 on the specific activity of 2’,3’-cyclic nucleotide 3’-phosphohydrolase of neonatal rat brain, Brain Res. 146: 200–204.

    Google Scholar 

  • Morris, J. E., and Moscona, A. A., 1971, The induction of glutamine synthetase in aggregates of embryonic neural retina cells: Correlations with differentiation and multicellular organization, Dev. Biol. 25: 420–444.

    PubMed  CAS  Google Scholar 

  • Morris, S., and Mackman, M., 1976, Cell density and receptor adenylate cyclase relationships in the C6 astrocytoma cell, Mol. Pharmacol. 12: 362–372.

    PubMed  CAS  Google Scholar 

  • Morrison, R., and de Vellis, J., 1981, Growth of purified astrocytes in chemically defined media, Proc. Natl. Acad. Sci. U.S.A. 78: 7205–7209.

    PubMed  CAS  Google Scholar 

  • Morrison, R. S., Saneto, R. P., and de Vellis, J., 1982, Developmental expression of rat brain mitogens for cultured astrocytes, J. Neurosci. Res. 8: 435–442.

    PubMed  CAS  Google Scholar 

  • Moscona, A. A., 1975, Comments on embryonic cell associations in enzyme induction and histogenesis: Experimental systems for studies on teratogenesis, in: Tests of Teratogenicity in Vitro ( J. D. Ebert and M. Marois, eds.), pp. 67–72, North-Holland, Amsterdam.

    Google Scholar 

  • Moscona, M., Frenkel, N., and Moscona, A. A., 1972, Regulatory mechanisms in the induction of glutamine synthetase in the embryonic retina: Immunochemical studies, Dev. Biol. 28: 229–241.

    PubMed  CAS  Google Scholar 

  • Muller, B. W., and Siefert, W., 1982, A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res. 8: 195–204.

    PubMed  CAS  Google Scholar 

  • Murphy, R. A., Oger, J., Saide, J. D., Blanchard, M. H., Arnason, B. G., Hogan, C., Pantazis, N. J., and Young, M., 1977, Secretion of nerve growth factor by central nervous system glioma cells in culture, J. Cell Biol. 72: 769–773.

    PubMed  CAS  Google Scholar 

  • Nicholson, G.,I976a, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457: 57–108.

    Google Scholar 

  • Nicholson, G., 1976b, Transmembrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy, Biochim. Biophys. Acta 458: 1–72.

    Google Scholar 

  • Nissen, C., and Schousboe, A., 1979, Activity and isozyme pattern of lactate dehydrogenase in astroblasts cultured from brains of newborn mice, J. Neurochem. 32: 1787–1792.

    PubMed  CAS  Google Scholar 

  • Norenberg, M. D., and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res. 161: 303–310.

    PubMed  CAS  Google Scholar 

  • Norrgren, G., Ebendal, T., Belew, M., Jacobson, C. O., and Porath, J., 1980, Release of nerve growth factor by human glial cells in culture, Exp. Cell Res. 130: 31–39.

    PubMed  CAS  Google Scholar 

  • Norton, W. T., and Autilio, L. A., 1966, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213–222.

    PubMed  CAS  Google Scholar 

  • Olafson, R. W., Drummond, G. I., and Lee, J. F., 1969, Studies on 2’,3’-cyclic nucleotide 3’phosphohydrolase from brain, Can. J. Biochem. 47: 961–966.

    PubMed  CAS  Google Scholar 

  • O’Malley, B. T., Speisburg, W., Schrader, F., Chytil, F., and Stegglas, A., 1972, Mechanisms of interaction of a hormone receptor complex with the genome of a eukaryotic target cell, Nature (London) 235: 141–144.

    Google Scholar 

  • Pardee, A. B., 1975, The cell surface and fibroblast proliferation—some current research trends, Biochim. Biophys. Acta 417: 153–172.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1: 1–17.

    PubMed  CAS  Google Scholar 

  • Parker, K. K., Norenberg, M. D., and Vernadakis, A., 1980, “Transdifferentiation” of C6 glial cells in culture, Science 208:179–181.

    Google Scholar 

  • Patterson, P. H., and Chun, L. L. Y., 1974, The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons, Proc. Natl. Acad. Sci. U.S.A. 71: 3607–3610.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., and Chun, L. L. Y., 1977a, The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons, Dev. Biol. 56: 263–280.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., and Chun, L. L. Y., 1977b, The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. Il. Developmental aspects, Dev. Biol. 60: 473–481.

    PubMed  CAS  Google Scholar 

  • Patterson, P. H., Reichardt, L. F., and Chun, L. L. Y., 1975, Biochemical studies on the development of primary sympathetic neurons in cell culture, Cold Spring Harbor Symp., Quant. Biol. 40: 389–397.

    Google Scholar 

  • Pegg, A. E., and Williams-Ashman, H. G., 1969, On the role of s-adenosylmethionine in the biosynthesis of spermidine in the rat prostate, J. Biol. Chem. 244: 682–693.

    PubMed  CAS  Google Scholar 

  • Peng, W. W., Bressler, J. P., Tiffany-Castiglioni, E., and de Vellis, J., 1982, Development of a monoclonal antibody against a tumor-associated antigen, Science 215: 1102–1104.

    PubMed  CAS  Google Scholar 

  • Perez-Polo, J. R., Hull, K., Livingston, K., and Westlund, K., 1977, Steroid induction of nerve growth factor in cell culture, Life Sci. 21: 1535–1544.

    PubMed  CAS  Google Scholar 

  • Pettman, B., Sensenbrenner, M., and Labourdette, G., 1980a, Isolation of a glial maturation factor from beef brain, FEBS Lett. 118: 195–199.

    Google Scholar 

  • Pettman, B., Delaunoy, J. P., Courageot, J., Devilliers, G., and Sensenbrenner, M., 1980b, Rat brain glial cells in culture: Effects of brain extracts on the development of oligodendrogliallike cells, Dev. Biol. 75: 278–287.

    Google Scholar 

  • Pfeiffer, S. E., 1973, Clonal lines of glial cells, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 203–230, Plenum Press, New York.

    Google Scholar 

  • Pfeiffer, S. E., Herschman, H. R., Lightbody, J., and Sato, G., 1970, Synthesis by clonal line of rat glial cells of a protein unique to the nervous system, J. Cell. Physiol. 75: 329–340.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, S. E., Herschman, H. R., Lightbody, J. E., Sato, G., and Levine, L., 1971, Modification of cell surface ontogenicity as a function of culture conditions, J. Cell Physiol. 78: 145–151.

    PubMed  CAS  Google Scholar 

  • Pishak, M. R., and Phillips, A. T., 1980, Glucocorticoid stimulation of glutamine synthetase production in cultured rat glioma cells, J. Neurochem. 34: 866–872.

    PubMed  CAS  Google Scholar 

  • Pitot, H. C., 1981, The biochemistry of cancer, in: Fundamentals of Oncology ( H. C. Pitot, ed.), pp. 159–193, Marcel Dekker, New York.

    Google Scholar 

  • Pleasure, D., Abramsky, O., Silberberg, D., Quinn, B., and Parvis, J., 1977, Biochemical studies of oigodendrocytes from calf brain, Trans. Am. Soc. Neurochem. 8: 143.

    Google Scholar 

  • Poser, C. M., 1978, Dysmyelination revisited, Arch. Neurol. 35: 401–408.

    PubMed  CAS  Google Scholar 

  • Prasad, K., 1977, Role of cyclic nucleotides in the differentiation of nerve cells, in: Cell, Tissue, and Organ Cultures in Neurobiology ( S. Fedoroff and L. Hertz, eds.), pp. 447–484, Academic Press, New York.

    Google Scholar 

  • Prasad, K. N., and Hsie, A. W., 1971, Morphological differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3’:5’-cyclic monophosphate, Nature (London) 233: 141–142.

    CAS  Google Scholar 

  • Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. F., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S., and Kennedy, M. S., 1978, Galactoce rebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature (London) 274: 813–816.

    CAS  Google Scholar 

  • Ranscht, B., Clapshaw, P. A., Price, J., Noble, M., and Seifert, W., 1982, Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside, Proc. Natl. Acad. Sci. U.S.A. 79: 2709–2713.

    PubMed  CAS  Google Scholar 

  • Reese, R., and Bunge, R. P., 1974, Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons, J. Comp. Neurol. 157: 112.

    Google Scholar 

  • Reubi, J. C., Van den Berg, C., and Cuenco, M., 1978, Glutamine as precursor for the GABA and glutamate transmitter pools, Neurosci. Leu. 10: 171–174.

    CAS  Google Scholar 

  • Revel, J. P., and Brown, S. S., 1976, Cell junction in development with particular reference to the neural tube, Cold Spring Harbor Symp. Quant. Biol. 40: 443–455.

    PubMed  CAS  Google Scholar 

  • Reynolds, C. P., and Perez-Polo, J. R., 1975, Human neuroblastoma: Glial induced morphological differentiation, Neurosci. Lett. 1: 91–97.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, M. G., and Barrieux, A., 1979, Binding of proteins to mRNA, Methods Enzymol. 60: 392–440.

    PubMed  CAS  Google Scholar 

  • Rosman, N. P., Malone, M. J., Hepenstein, M., and Kraft, E., 1972, The effect of thyroid deficiency on myelination of brain, Neurology 22: 99–105.

    PubMed  CAS  Google Scholar 

  • Sadasivudu, B., Rao, T. I., and Murthy, C. R., 1977, Acute metabolic effects of ammonia in mouse brain, Neurochem. Res. 2: 639–645.

    CAS  Google Scholar 

  • Salem, R., and de Vellis, J., 1976, Protein kinase activity and cAMP-dependent protein phosphorylation in subcellular fractions after norepinephrine treatment of glial cells, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35: 296.

    Google Scholar 

  • Salem, R., and de Vellis, J., 1980, Phosphorylation of plasma membrane proteins dependent on adenosine 3’,5’-monophosphate in rat-glial C6 cells, Eur. J. Biochem. 107: 271–278.

    PubMed  CAS  Google Scholar 

  • Saltzer, J. L., Williams, A. K., Glaser, L., and Bunge, R. P., 1980, Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neu-rite membrane fraction, J. Cell Biol. 84: 753–766.

    Google Scholar 

  • Sarlieve, L. L., Faroqui, A. A., Rebel, G., and Mandel, P., 1976, Arylsulfatase A and 2’,3’-cyclic nucleotide 3’-phosphohydrolase activities in the brains of myelin deficient mutant mice, Neuroscience 1: 519–522.

    PubMed  CAS  Google Scholar 

  • Sarlieve, L. L., Rao, G. S., Campbell, G. L., and Pieringer, R. A., 1980, Investigations on myelination in vitro: Biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res. 189: 79–90.

    PubMed  CAS  Google Scholar 

  • Sattin, A., and Rall, T. W., 1970, The influence of adenine nucleotides on the accumulation of adenosine-3’,5’-phosphate in brain slices, Mol. Pharmacol. 6: 13–23.

    PubMed  CAS  Google Scholar 

  • Schapiro, S., 1968, Some physiological, biochemical, and behavioral consequences of neonatal hormone administration: Cortisol and thyroxine, Gen. Comp. Endocrinol. 10: 214–228.

    PubMed  CAS  Google Scholar 

  • Schousboe, A., Beck, E., and Hertz, C., 1977, Effect of Bt2cAMP and serum withdrawal on morphological and biochemical differentiation of normal astrocytes in culture, Proc. Int. Soc. Neurochem. 6: 435.

    Google Scholar 

  • Schubert, P., Komp, W., and Kreutzberg, G. W., 1979, Correlation of 5’-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus, Brain Res. 168: 419–424.

    PubMed  CAS  Google Scholar 

  • Schultz, J., Hamprecht, B., and Daly, J. W., 1972, Accumulation of cAMP in clonal glial cells: Labelling of intracellular adenine nucleotides with radioactive adenine, Proc. Natl. Acad. Sci. U.S.A. 69: 1266–1270.

    PubMed  CAS  Google Scholar 

  • Schwark, W. S., Singhal, R. L., and Ling, G. M., 1971, Metabolic control mechanisms in mammalian systems: Thyroid hormone control of alpha-glycerolphosphate dehydrogenase activity in rat cerebral cortex and cerebellum, Can. J. Physiol. Pharmacol. 49: 598–607.

    PubMed  CAS  Google Scholar 

  • Schwartz, H. L., and Oppenheimer, J. H., 1978, Physiologic and biochemical actions of thyroid hormones, Pharmacol. Ther. B 3: 349–376.

    PubMed  CAS  Google Scholar 

  • Schwartz, J. P., and Costa, E., 1979, Activation of nuclear protein kinase and induction of cAMP phosphodiesterase in C6 glioma cells following stimulation of adrenergic beta receptors, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 263.

    Google Scholar 

  • Schwartz, J. P., Morris, N. R., and Breckenridge, B. McL., 1973, Adenosine 3’,5’-monophosphate in glial tumor cells, J. Biol. Chem. 248: 2699–2704.

    PubMed  CAS  Google Scholar 

  • Schwartz, J. P., Chuang, D., and Costa, E., 1977, Increase in nerve growth factor content in C6 glioma cells by the activation of a ß-adrenergic receptor, Brain Res. 137: 369–375.

    PubMed  CAS  Google Scholar 

  • Sealy, L., and Chalkley, R., 1978, The effect of sodium butyrate on histone modification, Cell 14: 115–121.

    PubMed  CAS  Google Scholar 

  • Sensenbrenner, M., Springer, N., Booher, J., and Mandel, P., 1972, Histochemical studies during the differentiation of dissociated nerve cells cultivated in the presence of brain extracts, Neurobiology 2: 49–60.

    PubMed  CAS  Google Scholar 

  • Shanker, G., Subba Rao, G., and Pieringer, R. A., 1982, Regulation of 5’-nucleotidase in dissociated brain cells of embroynic mice, Trans. Am. Soc. Neurochem. 13: 134.

    Google Scholar 

  • Shapiro, D., 1982, Steroid hormone regulation of vitellogenin gene expression, CRC Crit. Rev. Biochem. 12: 187–204.

    CAS  Google Scholar 

  • Shaw, G. S., 1979, The polyamines in the central nervous system: Commentary, Biochem. Pharmacol. 28: 1–6.

    PubMed  CAS  Google Scholar 

  • Sheppard, J. R., Brus, D., and Wehner, J. M., 1978, Brain reaggregate cultures: Biochemical evidence for myelin membrane synthesis, J. Neurobiol. 9: 309–315.

    PubMed  CAS  Google Scholar 

  • Simpson, D. L., Morrison, R., de Vellis, J., and Herschman, H. R., 1982a, Epidermal growth factor binding and mitogenic activity on purified populations of cells from the central nervous system, J. Neurosci. Res. 8: 453–462.

    PubMed  CAS  Google Scholar 

  • Simpson, D. L., Cawley, E. B., and Herschman, H. R., 19826, Killing of cultured hepatocytes by conjugates of asialofetuin and EGF linked to the A chains of ricin or diphtheria toxin, Cell 29: 469–473.

    Google Scholar 

  • Sobue, K., and Nakajima, T., 1978, Changes in concentrations of polyamines and gamma-aminobutyric acid and their formation in chick embryo brain during development, J. Neurochem. 30: 277–279.

    PubMed  CAS  Google Scholar 

  • Soh, B. M., and Sarkar, P. K., 1978, Control of glutamine synthetase messenger RNA by hydrocortisone in the embryonic chick retina, Dey. Biol. 64: 316–328.

    CAS  Google Scholar 

  • Sommer, I., and Schachner, M., 1981, Monoclonal antibodies (01 to 04) to oligodendrocyte cell surfaces: An immunocytological study in the central nervous system, Dey. Biol. 83: 311–327.

    CAS  Google Scholar 

  • Sprinkle, T. J., Wells, M. R., Garver, F. A., and Smith, D. B., 1980, Studies on the Wolfgram high molecular weight CNS myelin proteins: Relationship to 2’,3’-cyclic nucleotide 3’-phosphodiesterase, J. Neurochem. 35: 1200–1208.

    PubMed  CAS  Google Scholar 

  • Stadtman, E. R., 1973, Introduction: A note on the significance of glutamine in intermediary metabolism, in: The Enzymes of Glutamine Metabolism (S. Prusirer and E. R. Stadtman, eds.), pp. 1–6, Academic Press, New York.

    Google Scholar 

  • Stephens, J. L., and Pieringer, R. A., 1981, Hydrocortisone stimulates myelination in vitro in defined media, Trans. Am. Soc. Neurochem. 12: 226.

    Google Scholar 

  • Stewart, J. A., and Urban, M. I., 1972, The postnatal accumulation of S-100 protein in mouse central nervous system: Modulation of protein synthesis and degradation, Dev. Biol. 29: 372–384.

    PubMed  CAS  Google Scholar 

  • Stoscheck, C. M., Florini, J. R., and Richman, R. A., 1980, The relationship of ornithine decarboxylase activity to proliferation and differentiation of L6 muscle cells, J. Cell. Physiol. 102: 11–18.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., 1976, Chemistry and metabolism of brain lipids, in: Basic Neurochemistry ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 308–328, Little, Brown, Boston.

    Google Scholar 

  • Tabor, C. W., and Tabor, H., 1976, 1,4-Diaminobutane (putrescine), spermidine, and spermine, Annu. Rev. Biochem. 45: 285–306.

    Google Scholar 

  • Takigawa, M., Ishida, H., Takano, T., and Suzuki, F., 1980, Polyamines and differentiation: Induction of ornithine decarboxylase by parathyroid hormone is a good marker of differentiated chrondrocytes, Proc. Natl. Acad. Sci. U.S.A. 77: 1481–1485.

    PubMed  CAS  Google Scholar 

  • Tapia, R., and Gonzales, R. M., 1978, Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices, Neurosci. Lett. 10: 165–169.

    PubMed  CAS  Google Scholar 

  • Tata, J. R., Ernster, L., Lindberg, O., Arrhenius, E., Pedersen, S., and Hedman, R., 1963, The action of thyroid hormones at the cell level, Biochem. J. 86: 408–428.

    PubMed  CAS  Google Scholar 

  • Tennekoon, G. I., Cohen, S. R., Price, D. L., and McKhann, G. M., 1977, Myelinogenesis in optic nerve: A morphological, autoradiographic, and biochemical analysis, J. Cell Biol. 72: 604–616.

    PubMed  CAS  Google Scholar 

  • Terasaki, W. L., Brooker, G., de Vellis, J., Inglish, D., Hsu, C. Y., and Moylan, R. D., 1978, Involvement of cyclic AMP and protein synthesis in catecholamine refractoriness, in: Advances in Cyclic Nucleotide Research ( W. J. George and L. J. Igharron, eds.), pp. 33–52, Raven Press, New York.

    Google Scholar 

  • Varon, S., 1975, Nerve growth factor and its mode of action, Exp. Neurol. 48: 75–92.

    PubMed  CAS  Google Scholar 

  • Varon, S., and Adler, R., 1980, Nerve growth factors and control of nerve growth, Curr. Top. Dev. Biol. 16: 207–252.

    PubMed  CAS  Google Scholar 

  • Varon, S., and Adler, R., 1981, Trophic and specifying factors directed to neuronal cells, Adv. Cell. Neurobiol. 2: 115–163.

    CAS  Google Scholar 

  • Varon, S., Raiborn, C., and Norr, S., 1974, Association of antibody to nerve growth factor with ganglionic non-neurons (glia) and consequent interference with their neuron-supportive action, Exp. Cell. Res. 88: 247–256.

    PubMed  CAS  Google Scholar 

  • Venkov, L., Rosental, L., and Manolova, M., 1976, Subcellular distribution of LDH isoenzymes in neuronal-and glial-enriched fractions, Brain Res. 109: 323–333.

    PubMed  CAS  Google Scholar 

  • Viarengo, A., Zoncheddu, A., Taningher, M., and Orunesu, M., 1975, Sequential stimulation of nuclear RNA polymerase activities in livers from thyroidectomized rats treated with triiodothyronine, Endocrinology 97: 955–961.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., 1978, Lipid metabolism: Fatty acid and cholesterol biosynthesis, in: Diabetes, Obesity, and Vascular Disease ( H. M. Katzen and R. J. Mahler, eds.), pp. 37–125, Halstead Press, New York.

    Google Scholar 

  • Volpe, J. J., 1979a, Microtubules and the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 254: 2568–2571.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., 1979b, A role for microtubules in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol biosynthesis in cultured glial cells, J. Neurochem. 33: 97–106.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., and Hennessy, S. W., 1977, Cholesterol biosynthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cultured glial and neuronal cells: Regulation by lipoprotein and by certain free sterols, Biochim. Biophys. Acta 486: 408–420.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., and Obert, K. A., 1981, Relation of cholesterol biosynthesis to HMG-CoA reductase in glia, Trans. Am. Soc. Neurochem. 12: 215.

    Google Scholar 

  • Volpe, J. J., Fujimoto, K., Marasa, J. C., and Agrawal, H. C., 1975, Relation of C6 glial cells in culture to myelin, Biochem. J. 152: 701–703.

    PubMed  CAS  Google Scholar 

  • Volpe, J. J., Hennessy, S. W., and Wong, T., 1978, Regulation of cholesterol ester synthesis in cultured glial and neuronal cells: Relation to control of cholesterol synthesis, Biochim. Biophys. Acta 528: 424–435.

    PubMed  CAS  Google Scholar 

  • Waehneldt, T. V., and Malotka, J., 1980, Comparative electrophoretic study of the Wolfgram proteins in myelin from several mammalia, Brain Res. 189: 582–587.

    PubMed  CAS  Google Scholar 

  • Walters, S. N., and Morrell, P., 1981, Effects of altered thyroid states on myelinogenesis, J. Neurochem. 36: 1792–1801.

    PubMed  CAS  Google Scholar 

  • Weber, W. J., 1981, A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons, J. Biol. Chem. 256: 3447–3453.

    PubMed  CAS  Google Scholar 

  • Weingarten, D., and de Vellis, J., 1980, Selective inhibition by sodium butyrate of the glucocorticoid induction of glycerol phosphate dehydrogenase in glial cultures, Biochem. Biophys. Res. Commun. 93 (4): 1297–1304.

    PubMed  CAS  Google Scholar 

  • Weingarten, D. P., Kumar, S., and de Vellis, J., 1981, Paradoxical effects of sodium butyrate on the glucocorticoid inductions of glutamine synthetase and glycerol phosphate dehydrogenase in C6 cells, FEBS Lett. 126 (2): 289–291.

    PubMed  CAS  Google Scholar 

  • West, G. J., Uki, J., Stahn, R., and Herschman, H., 1977, Neurochemical properties of cell lines from N-ethyl-N-nitrosourea induced rat tumors, Brain Res. 130: 387–392.

    PubMed  CAS  Google Scholar 

  • Wu, C., 1963, Glutamine synthetase. I. A comparative study of its distribution in animals and its inhibition by DL-allo-8-hydroxylysine, Comp. Biochem. Physiol. 8: 335–351.

    CAS  Google Scholar 

  • Wu, C., 1976, Hormonal regulation of glutamine synthetase and ornithine aminotransferase in normal and neoplastic rat tissues, in: Control Mechanisms in Cancer ( W. F. Griss, T. Ono, and J. R. Sabine, eds.), pp. 125–138, Raven Press, New York.

    Google Scholar 

  • Wu, C., Roberts, E. H., and Bauer, J. M., 1965, Enzymes related to glutamine metabolism and tumor-bearing rats, Cancer Res. 25: 677–684.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K. R., and Alberts, B. M., 1976, Steroid receptor elements for modulation of eukaryotic transcription, Annu. Rev. Biochem. 45: 721–746.

    PubMed  CAS  Google Scholar 

  • Zanetta, J. P., Benda, P., Gombos, G., and Morgan, I. G., 1972, The presence of 2’,3’-cyclic AMP 3’-phosphohydrolase in glial cells in tissue culture, J. Neurochem. 19: 881–883.

    PubMed  CAS  Google Scholar 

  • Zomzely-Neurath, C., York, C., and Moore, B. W., 1972, Synthesis of a brain-specific protein (S-100) in a homologous cell-free system programmed with cerebral polysomal messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 69: 2326–2330.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weingarten, D.P., Kumar, S., Bressler, J., De Vellis, J. (1984). Regulation of Differentiated Properties of Oligodendrocytes. In: Norton, W.T. (eds) Oligodendroglia. Advances in Neurochemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6066-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6066-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6068-2

  • Online ISBN: 978-1-4757-6066-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics