In Vitro Studies of Oligodendroglial Lipid Metabolism

  • David Pleasure
  • Seung U. Kim
  • Donald H. Silberberg
Part of the Advances in Neurochemistry book series (ANCH, volume 5)


The only known function of oligodendroglia at present is to myelinate axons in the CNS. Myelin is a lipid-rich oligodendroglial plasma-membrane derivative containing galactolipids, cholesterol, and phospholipids in a molar ratio of about 1:2:2. In vivo studies have established the normal sequences of oligodendroglial maturation and myelination and have identified diseases in which initial CNS myelination is not carried to completion, such as phenylketonuria (PKU) and Krabbe’s disease, or in which normally myelinated CNS becomes demyelinated, such as multiple sclerosis (MS). Identification of the special metabolic characteristics of oligodendroglia that facilitate and regulate myelin synthesis and myelin maintenance will lead to a better understanding of the pathogenesis of dysmyelinative and demyelinative diseases.


Schwann Cell Myelin Basic Protein Experimental Allergic Encephalomyelitis Radioactive Precursor Myelin Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., and Norton, W. T., 1979, The characterization of sphingolipids of oligodendroglia from calf brain, J. Neurochem. 32: 823–832.PubMedGoogle Scholar
  2. Abe, T., Miyatake, T., Norton, W. T., and Suzuki, K., 1979, Activities of glycolipid hydrolases in neurons and astroglia from rat and calf brains and in oligodendroglia from calf brain, Brain Res. 161: 179–182.PubMedGoogle Scholar
  3. Abney, E. R., Bartlett, P. B., and Raff, M. C., 1981, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol. 83: 301–310.PubMedGoogle Scholar
  4. Abramsky, O., Lisak, R. P., Silberberg, D. H., Brenner, T., and Pleasure, D., 1979, Immune response to isolated oligodendrocytes, J. Neurol. Sci. 43: 157–167.PubMedGoogle Scholar
  5. Aguayo, A. J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G. M., and Richardson, P., 1978, Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia, Neurosci. Lett. 9: 97–104.PubMedGoogle Scholar
  6. Arebalo, R. E., Hardgrave, J. E., Noland, B. J., and Scallen, T. J., 1980, In vivo regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase: Enzyme phosphorylation as an early regulatory response after intragastric administration of mevalonolactone, Proc. Natl. Acad. Sci. U.S.A. 77: 6429–6433.Google Scholar
  7. Arebalo, R. E., Hardgrave, J. E., and Scallen, T. J., 1981, The in vivo reguation of rat liver 3hydroxy—methylglutaryl coenzyme A reductase: Phosphorylation of the enzyme as an early regulatory response following cholesterol feeding, J. Biol. Chem. 256: 571–574.PubMedGoogle Scholar
  8. Banik, N. L., and Davison, A. N., 1971, Exchange of sterols between myelin and other membranes of developing rat brain, Biochem. J. 122: 751–758.PubMedGoogle Scholar
  9. Barbarese, E., and Pfeiffer, S. E., 191, Developmental regulation of myelin basic protein in dispersed cultures, Proc. Natl. Acad. Sci. U.S.A. 78: 1953–1957.Google Scholar
  10. Barbarese, E., Pfeiffer, S. E., and Carson, J. H., 1983, Progenitors of oligodendrocytes: Limiting dilution analysis in fetal rat brain culture, Dev. Biol. 96: 84–88.PubMedGoogle Scholar
  11. Barnes, D., and Sato, G., 1980, Methods for growth of cultured cells in serum-free medium, Anal. Biochem. 102: 255–270.PubMedGoogle Scholar
  12. Beg, Z. H., Stonik, J. A., and Brewer, H. B. Jr., 1979, Characterization and regulation of reductase kinase, a protein kinase that modulates the enzyme activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, Proc. Natl. Acad. Sci. U.S.A. 76: 4375–4379.PubMedGoogle Scholar
  13. Benjamins, J.A., and Iwata, R., 1979, Kinetics of entry of galactolipids and phospholipids into myelin, J. Neurochem. 32: 921–926.PubMedGoogle Scholar
  14. Benjamins, J. A., Guarnieri, M., Miller, K., Sonneborn, M., and McKhann, G. M., 1974, Sulphatide synthesis in isolated oligodendroglia and neuronal cells, J. Neurochem. 23: 751–757.PubMedGoogle Scholar
  15. Benjamins, J. A., Fitch, J., and Radin, N. S., 1976, Effects of ceramide analogs on myelinating organ cultures, Brain Res. 102: 267–281.PubMedGoogle Scholar
  16. Bhat, S., and Pfeiffer, S. E., 1982, Myelinogenic gene expression intrinsic to cultured oligodendrocytes, Trans. Am. Soc. Neurochem. 13: 154 (abstract).Google Scholar
  17. Bhat, N. R., Sarlieve, L. L., Subba Rao, G., and Pieringer, R. A., 1979, Investigations on myelination in vitro: Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 254: 9342–9344.PubMedGoogle Scholar
  18. Bhat, N. R., Subba Rao, G., and Pieringer, R. A., 1981, Investigations on myelination in vitro: Regulation of sulfolipid synthesis by thryoid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 256: 1167–1171.PubMedGoogle Scholar
  19. Billings-Gagliardi, S., Adcock, L. H., Schwing, G. B., and Wolf, M. K., 1980, Hypomyelinated mutant mice. 11. Myelination in vitro, Brain Res. 200: 135–150.PubMedGoogle Scholar
  20. Blusztajn, J. K., Zeisel, S. H., and Wurtman, R. J., 1979, Synthesis of lecithin (phosphatidyl choline) from phosphatidylethanolamine in bovine brain, Brain Res. 179: 319–327.PubMedGoogle Scholar
  21. Bologa, L., Z’Graggen, A., Rossi, E., and Herschkowitz, N., 1982, Differentiation and proliferation: Two possible mechanisms for the regeneration of oligodendrocytes in culture, J. Neurol. Sci. 57: 419–434.PubMedGoogle Scholar
  22. Bologa, L., Bisconte, J. C., Joubert, R., Marangos, P. J., Derbin, C., Rioux, F., and Herschkowitz, N., 1983, Accelerated differentiation of oligodendrocytes in neuronal-rich embryonic mouse brain cell cultures, Brain Res. 252: 129–136.Google Scholar
  23. Bologa-Sandru, L., Siegrist, H. P., Z’Graggen, A., Hofmann, K., Wiesmann, U., Dahl, D., and Herschkowitz, N., 198la, Expression of antigenic markers during the development of oligodendrocytes in mouse brain cell cultures, Brain Res. 210: 217–229.Google Scholar
  24. Bologa-Sandru, L., Zalc, B., Herschkowitz, N., and Baumann, N., 1981b, Oligodendrocytes of Jimpy mice express galactosylceramide: An immunofluorescence study of brain sections and dissociated brain cell cultures, Brain Res. 225: 425–430.PubMedGoogle Scholar
  25. Bornstein, M. B., and Appel, S. H., 1961, The application of tissue culture to the study of experimental “allergic” encephalomyelitis. 1. Patterns of demyelination, J. Neuropathol. Exp. Neurol. 20: 141–157.Google Scholar
  26. Bornstein, M. B., and Murray, M. R., 1958, Serial observations of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum, J. Biophys. Biochem. Cytol. 4: 499–504.PubMedGoogle Scholar
  27. Bottenstein, J. E., and Sato, G. H., 1979, Growth of a rat neuroblastoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. U.S.A. 76: 514–517.PubMedGoogle Scholar
  28. Bottenstein, J. E., Skaper, S. K., Varon, S. S., and Sato, G. H., 1980, Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium, Exp. Cell Res. 125: 183–190.PubMedGoogle Scholar
  29. Bradbury, K., and Lumsden, C. E., 1979, The chemical composition of myelin in organ cultures of rat cerebellum, J. Neurochem. 32: 145–154.PubMedGoogle Scholar
  30. Brammer, M. J., and Carey, S. G., 1980, Incorporation of choline and inositol into phospholipids of isolated oligodendrocyte perikaya, J. Neurochem. 35: 873–879.PubMedGoogle Scholar
  31. Breen, G., and de Vellis, J., 1974, Regulation of glycerol phosphate dehydrogenase by rat cerebral cell cultures, Dev. Biol. 41: 255–266.PubMedGoogle Scholar
  32. Brockes, J. P., Lemke, G. E., and Balzer, D. R., Jr., 1980, Purification and preliminary characterization of a glial growth factor from the bovine pituitary, J. Biol. Chem. 255: 8374–8377.PubMedGoogle Scholar
  33. Brown, M. S., and Goldstein, J. L., 1980, Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth, J. Lipid Res. 21: 505–517.PubMedGoogle Scholar
  34. Brown, M. S., Kovanen, P. T., and Goldstein, J. L., 1981, Regulation of plasma cholesterol by lipoprotein receptors, Science 212: 628–635.PubMedGoogle Scholar
  35. Buckley B. M., and Williamson, D. H., 1973, Acetoacetate and brain lipogenesis: Developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain, Biochem. J. 132: 653–656.PubMedGoogle Scholar
  36. Crammer, W., and Zimmerman, T. R., Jr., 1983, Glycerol phosphate dehydrogenase, glucose6-phosphate dehydrogenase, lactate dehydrogenase and carbonic anhydrase activities in oligodendrocytes and myelin: Comparisons between species and CNS regions, Dev. Brain Res. 6: 21–26.Google Scholar
  37. Crammer, W., Snyder, D. S., Zimmerman, T. R., Jr., Farooq, M., and Norton, W. T., 1982, Glycerol phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase: Activities in oligodendrocytes, neurons, astrocytes, and myelin isolated from developing rat brains, J. Neurochem. 38: 360–367.Google Scholar
  38. Chao, S. W., and Rumsky, M. D., 1977, Preparation of astrocytes, neurons and oligodendrocytes from the same rat brain, Brain Res. 124: 347–351.PubMedGoogle Scholar
  39. Cohen, S. R., and Bensohn, J., 1973, Incorporation of 1–14C labelled fatty acids into isolated neuronal soma, astroglia and oligodendroglia from calf brain, Brain Res. 60: 521–525.PubMedGoogle Scholar
  40. Connor, W., Johnston, R., and Lin, D., 1969, Metabolism of cholesterol in the tissues and blood of the chick embryo, J. Lipid Res. 10: 388–394.PubMedGoogle Scholar
  41. Costantino-Ceccarini, E., and Suzuki, K., 1975, Evidence for presence of UDP-glactose:ceramide galactsyl transferase in rat myelin, Brain Res. 93: 358–362.PubMedGoogle Scholar
  42. Dawson, G., and Kernes, S. M., 1978, Induction of sulfogalactosylceramide (sulfatide) synthesis by hydrocortisone (cortisol) in mouse G-26 oligodendroglioma cell strains. J. Neurochem. 31: 1091–1094.PubMedGoogle Scholar
  43. Dawson, G., and Kernes, S. M., 1979, Mechanism of action of hydrocortisone potentiation of sulfogalactosyl ceramide synthesis in mouse oligodendroglioma clonal cell lines, J. Biol. Chem. 254: 163–167.PubMedGoogle Scholar
  44. Dawson, G., Sundarra, J. N., and Pfeiffer, S. E., 1977, Synthesis of myelin glycosphingolipids [galactosylceramide and galactosyl (3–0-sulfate) ceramide (sulfatide)] by cloned cell lines derived from mouse neurotumors, J. Biol. Chem. 252: 2777–2779.PubMedGoogle Scholar
  45. Deshmukh, D. S., Flynn, T. J., and Pieringer, R. A., 1974, The biosynthesis and concentration of galactosyl diglyceride in glial and neuronal enriched fractions of actively myelinating rat brain, J. Neurochem. 22: 479–485.PubMedGoogle Scholar
  46. Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978, Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin, J. Neurochem. 30: 1191–1193.PubMedGoogle Scholar
  47. DeVivo, D. C., Fishman, M. A., and Agrawal, H. C., 1973, Preferential labelling of brain cholesterol by (3–14C)-D-3-hydroxybutyrate, Lipids 8: 649–651.PubMedGoogle Scholar
  48. Dorfman, S. H., Holtzer, H., and Silberberg, D. H., 1976, Effect of 5-bromo-2’-deoxyuridine or cytosine-beta-r-arabinofuranoside hydrochloride on myelination in newborn rat cerebellum cultures following removal of myelination inhibiting antiserum to whole cord or cerebroside, Brain Res. 104: 283–294.PubMedGoogle Scholar
  49. Dorman, R. V., Toews, A. D., and Horrocks, L. A., 1977, Plasmalogenase activities in neuronal perikarya, astroglia, and oligodendroglia isolated from bovine brain, J. Lipid Res. 18: 115–117.PubMedGoogle Scholar
  50. Dubois-Dalcq, M., Rentier, B., Baron, A., van Evercooren, N., and Burge, B. W., 1981, Structure and behavior of rat primary and secondary Schwann cells in vitro, Exp. Cell Res. 131: 283–297.PubMedGoogle Scholar
  51. Edmond, J., 1974, Ketone bodies as precursors of sterols and fatty acids in the developing rat, J. Biol. Chem. 249: 72–80.PubMedGoogle Scholar
  52. Edwards, P. A., Lemongello, D., Kane, J., Shechter, I., and Fogelman, A. M., 1980, Properties of purified rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and regulation of enzyme activity, J. Biol Chem. 255: 3715–3725.PubMedGoogle Scholar
  53. Farooq, M., Cammer, W., Snyder, D. S., Raine, C. S., and Norton, W. T., 1981, Properties of bovine oligodendroglia isolated by a new procedure using physiologic conditions, J. Neurochem. 36: 431–440.PubMedGoogle Scholar
  54. Fewster, M. E., and Mead, J. F., 1968, Lipid composition of glial cells isolated from bovine white matter, J. Neurochem. 15: 1041–1052.PubMedGoogle Scholar
  55. Fewster, M. E., Scheibel, A. B., and Mead, J. F., 1967, The preparation of isolated glial cells from rat and bovine white matter, Brain Res. 6: 401–408.PubMedGoogle Scholar
  56. Fewster, M. E., Ihrig, T., and Mead, J. R., 1975, Biosynthesis of long chain fatty acids by oligodendroglia isolated from bovine white matter, J. Neurochem. 25: 207–213.PubMedGoogle Scholar
  57. Fields, K. L., 1979, Cell type-specific antigens of cells of the central and peripheral nervous system, Cur. Top. Dev. Biol. 13: 237–257.Google Scholar
  58. Flynn, T. J., Deshmukh, D. S., and Pieringer, R. A., 1977, Effects of altered thyroid function of galactosyl diacylglycerol metabolism in myelinating rat brain, J. Biol. Chem. 252: 5864–5870.PubMedGoogle Scholar
  59. Fry, J. M., Lehrer, G. M., and Bornstein, M. B., 1972, Sulfatide synthesis: Inhibition by experimental allergic encephalomyelitis serum, Science 175: 192–194.PubMedGoogle Scholar
  60. Gebicke-Harter, P. J., Althaus, H. H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell culture. I. Regeneration and maintenance, Dev. Brain Res. 1: 497–518.Google Scholar
  61. Grundke-Iqbal, I., Raine, C. S., Johnson, A. B., Brosnan, C. F., and Bornstein, M. B., 1981, Experimental allergic encephalomyelitis: Characterization of serum factors causing demyelination and swelling of myelin, J. Neurol. Sci. 50: 63–79.PubMedGoogle Scholar
  62. Hartman, B. K., Agrawal, H. C., Agrawal, D., and Kalmbach, S., 1982, Development and maturation of central nervous sytem myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes, Proc. Natl. Acad. Sci. U.S.A. 79: 4217–4220.PubMedGoogle Scholar
  63. Herndon, R. M., Price. D. L., and Weiner, L. P., 1977, Regeneration of oligodendroglia during recovery from demyelinating disease, Science 195: 693–694.PubMedGoogle Scholar
  64. Herschkowitz, N. Bologa, L., and Siegrist, H. P., 1982, Characterization of mouse oligodendrocytes during development, Trans. Am. Soc. Neurochem. 13: 173 (abstract).Google Scholar
  65. Hild, W., 1957, Myelinogensis in cultures of mammalian central nervous tissue, Z. Zellforsch. 46: 71–95.PubMedGoogle Scholar
  66. Hirata, F., Viveros, O. H., Diliberto, E. J., Jr., and Axelrod, J., 1978, Identification and properties of two methyl transferases in conversion of phosphatidyl ethanolamine to phosphatidyl choline, Proc. Natl. Acad. Sci. U.S.A. 75: 1718–1721.PubMedGoogle Scholar
  67. Hirayama, M., Silberberg, D. H., Lisak, R. P., and Pleasure, D., 1983, Long-term culture of oligodendrocytes isolated from rat corpus callosum by Percoll density gradient—lysis by polyclonal antigalactocerebroside serum, J. Neuropath. Exp. Neurol. 42: 16–28.PubMedGoogle Scholar
  68. Honegger, P., Lenoir, D., and Favrod, P., 1979, Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium, Nature (London) 282: 305–308.Google Scholar
  69. Horrocks, L. A., 1967, Composition of myelin from peripheral and central nervous systems of the squirrel monkey, J. Lipid Res. 8: 569–576.PubMedGoogle Scholar
  70. Imamoto, K., Paterson, J. A., and LeBlond, C. P., 1978, Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes, J. Comp. Neurol. 180: 115–138.PubMedGoogle Scholar
  71. Kennedy, P. G E., Lisak, R. P., and Raff, M. C., 1980, Cell type-pecific markers for human glial and neuronal cells in culture, Lab Invest. 43: 342–351.PubMedGoogle Scholar
  72. Kies, M. W., Driscoll, B. F., Seil, F. J., and Alvord, E. C., Jr., 1973, Myelination inhibition factor: Dissociation from induction of experimental allergic encephalomyelitis, Science 179: 689–690.PubMedGoogle Scholar
  73. Kim, S. U., 1975, Effects of the cholesterol biosynthesis inhibitor AY9944 on organotypic cultures of mouse spinal cord: Retarded myelinogenesis and induction of cytoplasmic inclusions, Lab. Invest. 32: 720–728.PubMedGoogle Scholar
  74. Kim, S. U., and Pleasure, D. E., 1978a, Tissue culture analysis of neurogensis: Myelination and synapse formation are retarded by serum deprivation, Brain Res. 145: 15–25.PubMedGoogle Scholar
  75. Kim, S. U., and Pleasure, D. E., 1978b, Tissue culture analysis of neurogenesis. II. Lipid-free medium retards myelination in mouse spinal cord cultures, Brain Res. 157: 206–211.PubMedGoogle Scholar
  76. Kishimoto, Y., Wajda, M., and Radin, N. S., 1968, 6-Acyl galactosyl ceramides of pig brain: Structure and fatty acid composition, J. Lipid Res. 9: 27–33.Google Scholar
  77. Kleinschmidt, D., and Bunge, R. P., 1980, Myelination in cultures of embryonic rat spinal cord grown in a serum-free medium, J. Cell Biol. 87: 66 (abstract).Google Scholar
  78. Kleinsek, D. A., Jabalquinto, A. M., and Porter, J. W., 1980, In vivo and in vitro mechanisms regulating rat liver beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity, J. Biol. Chem. 255: 3918–3923.Google Scholar
  79. Kreider, B., Messing, A., Doan, H., Kim, S. U., Lisak, R. P., and Pleasure, D., 1981, Enrichment of Schwann cell cultures from neonatal rat sciatic nerve by differential adhesion, Brain Res. 207: 433–444.PubMedGoogle Scholar
  80. Kreider, B. Q., Corey-Bloom, J., Lisak, R. P., Doan, H., and Pleasure, D. E., 1982, Stimulation of mitosis of cultured rat Schwann cells isolated by differential adesion, Brain Res. 237: 238–243.PubMedGoogle Scholar
  81. Kritchevsky, D., Tepper, S. A., DiTullio, N. W., and Holmes, W. L., 1965, Desmosterol in developing rat brain, J. Am. Oil Chem. Soc. 42: 1024–1028.PubMedGoogle Scholar
  82. Laatsch, R. H., 1962, Glycerol phosphate dehydrogenase activity of developing rat central nervous system, J. Neurochem. 9: 487–492.PubMedGoogle Scholar
  83. Latovitzki, N., and Silberberg, D. H., 1973, Quantification of galactolipids in myelinating cultures of rat cerebellum, J. Neurochem. 20: 1771–1776.PubMedGoogle Scholar
  84. Latovitzki, N., and Silberberg, D. H., 1975, Ceramide glycosyltransferases in cultured rat cerebellum: Changes with age, with demyelination, and with inibition of myelination by 5bromo-2’-deoxyuridine of experimental allergic encephalomyelitis serum, J. Neurochem. 24: 1017–1022.PubMedGoogle Scholar
  85. Latovitzki, N., and Silberberg, D. H., 1977, UDP-galactose:ceramide galactosyl transferase and 2’,3’-cyclic nucleotide 3’-phosphohydrolase activities in cultured newborn rat cerebellum: Association with myelination and concurrent susceptibility to 5-bromodeoxyuridine, J. Neurochem. 29: 611–614.PubMedGoogle Scholar
  86. Lehrer, G. M., Maker, H. S., Silides, D. J., Weiss, C., and Bornstein, M. B., 1978, Antiwhole white matter serum inhibits incorporation of glucose and galactose into the lipids of myelinating spinal cord cultures, J. Neurochem. 30: 247–251.PubMedGoogle Scholar
  87. Leveille, P. J., McGinnis, J. F., Maxwell, D. S., and de Vellis, J., 1980, Immunocytochemical localization of glycerol-3-phosphate dejydrogenase in rat oligodendrocytes, Brain Res. 196: 287–305.Google Scholar
  88. Lisak, R. P., Pleasure, D. E., Silberberg, D. H., Manning, M. C., and Saida, T., 1981, Longterm culture of bovine oligodendroglia isolated with a Percoll gradient, Brain Res. 223: 107–122.PubMedGoogle Scholar
  89. Mack, S. R., and Szuchet, S., 1981, Synthesis of myelin glycosphingolipids by isolated oligodendrocytes in tissue culture, Brain Res. 214: 180–185.PubMedGoogle Scholar
  90. Mack, S. R., Szuchet, S., and Dawson, G., 1981, Synthesis of gangliosides by cultured oligodendrocytes, J. Neurosci. Res. 6: 361–367.PubMedGoogle Scholar
  91. Macklin, W. B., and Pfeiffer, S. E., 1983, Myelin proteolipid time course in primary cultures of fetal rat brain, Trans. Am. Neurochem. Soc. 14: 212.Google Scholar
  92. Maker, H. S., and Hauser, G., 1967, Incorporation of glucose carbon into gangliosides and cerebrosides by slices of developing rat brain, J. Neurochem. 14: 457–464.PubMedGoogle Scholar
  93. Maltese, W. A., and Volpe, J. J., 1979a, Developmental changes in the distribution of 3-hydroxy3-methylglutaryl coenzyme A reductase among subcellular fractions of rat brain, J. Neurochem. 33: 107–115.PubMedGoogle Scholar
  94. Maltese, W. A., and Volpe, J. J., 1979b, Activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in homogenates of developing rat brain, Biochem. J. 182: 367–370.PubMedGoogle Scholar
  95. Manthorpe, M., Skaper, S., and Varon, S., 1980, Purification of mouse Schwann cells using neurite-induced proliferation in serum-free monolayer culture, Brain Res. 196: 467–482.PubMedGoogle Scholar
  96. Mantzos, J. D., Chiotaki, L., and Levis, G. M., 1973, Biosynthesis and composition of brain galactolipids in normal and hypothyroid rats, J. Neurochem. 21: 1207–1213.PubMedGoogle Scholar
  97. Matthieu, J. M., Honeggar, P., Favrod, P., Gautier, E., and Dolivo, M., 1979, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell cultures, J. Neurochem. 32: 869–881.PubMedGoogle Scholar
  98. McCarthy, K. D., and de Vellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890–902.PubMedGoogle Scholar
  99. McGinnis, J. F., and de Vellis, J., 1978, Glucocorticoid regulation in rat brain cell cultures: Hydrocortisone increases the rate of synthesis of glycerol phosphate dehydrogenase in C6 glioma cells, J. Biol. Chem. 253: 8483–8492.Google Scholar
  100. McMorris, F. A., Miller, S. L., Pleasure, D., and Abramsky, 0., 1981, Expression of biochemical properties of oligodendrocytes in oligodendrocyte X glioma cell hybrids proliferating in vitro, Exp. Cell Res. 133: 395–404.PubMedGoogle Scholar
  101. Miller, S. L., Benjamins, J. A., and Morell, P., 1977, Metabolism of glycerophospholipids of myelin and microsomes in rat brain: Reutilization of precursors, J. Biol. Chem. 252: 4025–4037.PubMedGoogle Scholar
  102. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84: 483–494.PubMedGoogle Scholar
  103. Morell, P., and Braun, P., 1972, Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid, J. Lipid Res. 13: 293–310.PubMedGoogle Scholar
  104. Neskovic, N. M., Rebel, G., Harth, S., and Mandel, P., 1981, Biosynthesis of galactocerebrosides and glucerebrosides in glial cell lines, J. Neurochem. 37: 1363–1370.PubMedGoogle Scholar
  105. Norton, W. T., Farooq, M., Fields, K. L., and Raine, C. S., 1982, Long-term culture of bovine oligodendroglia, Trans. Am. Soc. Neurochem. 13: 171 (abstract).Google Scholar
  106. Okada, E., 1982, Oligodendrocyte myelination of sensory ganglion neurites in long term culture, Okajimas Folia Anat. Jpn. 58: 957–974.PubMedGoogle Scholar
  107. Peterson, E. R., and Murray, M. R., 1955, Myelin sheath formation in cultures of avian spinal ganglia, Am. J. Anat. 96: 319–355.PubMedGoogle Scholar
  108. Pleasure, D., and Kim, S. U., 1976a, Sterol synthesis by myelinating cultures of mouse spinal cord, Brain Res. 103: 117–126.PubMedGoogle Scholar
  109. Pleasure, D., and Kim, S. U., 1976b, Enzyme markers for myelination of mouse cerebellum in vivo and in tissue culture, Brain Res. 104: 193–196.PubMedGoogle Scholar
  110. Pleasure, D., Abramsky, O., Silberberg, D., Quinn, B., Parris, J., and Saida, T., 1977, Lipid synthesis by an oligodendroglial fraction in suspension culture, Brain Res. 134: 377–382.PubMedGoogle Scholar
  111. Pleasure, D., Lichtman, C., Eastman, S., Lieb, M., Abramsky, O. and Silberberg, D., 1979, Acetoacetate and n-(-)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: Extramitochondrial pathway for acetoacetate metabolism, J. Neurochem. 32: 1447–1450.PubMedGoogle Scholar
  112. Pleasure, D., Hardy, M., Johnson, G., Lisak, R. P., and Silberberg, D., 1981, Oligodendroglial glycerophospholipid synthesis: Incorporation of radioactive precursors into ethanolamine glycerophospholipids by calf oligodendroglia prepared by a Percoll procedure and maintained in suspension culture, J. Neurochem. 36: 452–460.Google Scholar
  113. Poduslo, S. E., 1975, The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain, J. Neurochem. 24: 647–654.PubMedGoogle Scholar
  114. Poduslo, S. E., and McKhann, G. M., 1977, Synthesis of cerebrosides by intact oligodendroglia maintained in culture, Neurosci. Lett. 5: 159–163.PubMedGoogle Scholar
  115. Poduslo, S. E., and Norton, W. T., 1972, Isolation and some chemical properties of oligodendroglia from calf brain, J. Neurochem. 19: 727–736.PubMedGoogle Scholar
  116. Poduslo, S. E., Miller, K., and McKhann, G. M., 1978, Metabolic properties of maintained oligodendroglia purified from brain, J. Biol. Chem. 253: 1592–1597.PubMedGoogle Scholar
  117. Preston, S. L., and McMorris, F. A., 1983, Adrenalectomy of rats results in hypomyelination of the CNS, J. Neurochem.,in press.Google Scholar
  118. Pruss, R. M., Bartlett, P. F., Gavrillovic, J., Lisak, R. P., and Rattray, S., 1982, Mitogens for glial cells: A comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells, Dev. Brain Res. 2: 19–35.Google Scholar
  119. Raff, M. C., Abney, E., Brockes, J. P., and Hornby-Smith, A., 1978a, Schwann cell growth factors, Cell 15: 813–822.PubMedGoogle Scholar
  120. Raff, M. C., Mirsky, R., Fields, K. L., Lisak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Leibowitz, S., and Kennedy, M. C., 1978b, Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture, Nature, (London) 274: 813–816.Google Scholar
  121. Raff, M. C., Fields, K. L., Hakomori, S. I., Mirsky, R., Pruss, R. M., and Winter, J., 1979, Celltype-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174: 283–308.PubMedGoogle Scholar
  122. Raine, C. S., 1973, Ultrastructural applications of cultured nervous system tissue to neuropathology, Prog. Neuropathol. 2: 27–68.Google Scholar
  123. Raine, C. S., Poduslo, S. E., and Norton, W. T., 1971, The ultrastructure of purified preparations of neurons and glial cells, Brain Res. 27: 11–24.PubMedGoogle Scholar
  124. Rioux, F., Derbi, C., Margules, S., Joubert, R., and Bisconte, J. C., 1980, Kinetics of olgodendrocyte-like cells in primary culture of mouse embryonic brain, Dev. Biol. 76: 87–99.PubMedGoogle Scholar
  125. Roheim, P. S., Carey, M., Forte, T., and Vega, G. L., 1979, Apolipoproteins in human cerebrospinal Fluid, Proc Natl. Acad. Sci. U.S.A. 76: 4646–4649.PubMedGoogle Scholar
  126. Ross, L. L., Bornstein, M. B., and Lehrer, G. M., 1962, Electron microscopic observations of rat and mouse cerebellum in tissue culture, J. Cell Biol. 14: 19–30.PubMedGoogle Scholar
  127. Salzer, J.., and Bange, R. P., 1980, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury, J. Cell Biol. 84: 739–752.PubMedGoogle Scholar
  128. Salzer, J.., Williams, A. K., Glaser, L., and Bunge, R. P., 1980, Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction, J. Cell Biol. 84: 753–766.PubMedGoogle Scholar
  129. Sarlieve, L. L., Subba Rao, G., Campbell, G. Le M., and Pieringer, R. A., 1980, Investigations on myelination in vitro: Biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res. 189: 79–90.PubMedGoogle Scholar
  130. Satomi, D., and Kishimoto, Y., 1981, Change of galactolipids and metabolism of fatty acids in organotypic culture of myelinating mouse brain, Biochim. Biophys. Acta 666: 446–454.PubMedGoogle Scholar
  131. Saucier, S. E., and Kandutsch, A. A., 1979, Inactive 3-hydroxy-3-methylglutaryl-coenzyme A reductase in broken cell preparations of various mammalian tissues and cell cultures, Biochim. Biophys. Acta 572: 541–556.PubMedGoogle Scholar
  132. Schachner, M., Kim, S. U., and Zehnle, R., 1981, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies, Dev. Biol. 33: 328–338.Google Scholar
  133. Schneider, W. J., and Vance, D. E., 1979, Conversion of phosphatidylethanolamine to phosphatidylcholine in rat liver: Partial purification and characterization of the enzymatic activities, J. Biol. Chem. 254: 3886–3891.PubMedGoogle Scholar
  134. Seil, F. J., and Blank, N. K., 1981, Myelination of central nervous system axons in tissue culture by transplanted oligodendrocytes, Science 212: 1407–1408.PubMedGoogle Scholar
  135. Shanker, G., and Pieringer, R. A., 1983, Effect of thyroid hormone on the synthesis of sialosyl galactosylceramide (GM4) in myelinogenic cultures of cells dissociated from embryonic mouse brain, Dev. Brain Res. 6: 169–174.Google Scholar
  136. Sheppard, J. R., Brus, D., and Wehner, J. M., 1978, Brain reaggregate cultures: Biochemical evidence for myelin membrane synthesis, J. Neurobiol. 9: 309–315PubMedGoogle Scholar
  137. Silberberg, D. H., 1967, Phenylketonuria metabolities in cerebellum culture morphology, Arch. Neurol. 17: 524–529.PubMedGoogle Scholar
  138. Silberberg, D. H., Benjamins, J., Herschkowitz, N., and McKhann, G. M., 1972, Incorporation of radioactive sulphate into sulphatide during myelination in cultures of rat cerebellum, J. Neurochem. 19: 11–18.PubMedGoogle Scholar
  139. Silberberg, D. H., Dorfman, S. H., Latovitzki, N., and Younkin, L. H., 1980, Oligodendrocyte differentiation in myelinating cultures, in Tissue Culture in Neurobiology E. Giacobini, pp. 489–500.Google Scholar
  140. Singh, H. and Pfeiffer, S. E., 1983, Expression of galactolipids by mixed primary cultures from rat brain, Trans. Am. Soc. Neurochem. 14: 218.Google Scholar
  141. Skoff, R. P., Price, D. L., and Stocks, A., 1976a, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation, J. Comp. Neurol. 169: 291–312.PubMedGoogle Scholar
  142. Skoff, R. P., Price, D. L., and Stocks, A., 19766, Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin, J. Comp. Neurol. 169: 313–334.Google Scholar
  143. Smith, M. E., 1964, Lipid biosynthesis in the central nervous system in experimental allergic encaphalomyelitis, J. Neurochem. 11: 29–37.PubMedGoogle Scholar
  144. Smith, M. E., 1969, An in vitro system for the study of myelin synthesis, J. Neurochem. 16: 83–92.PubMedGoogle Scholar
  145. Smith, M. E., 1973, A regional survey of myelin development: Some compositional and metabolic aspects, J. Lipid Res. 14: 541–551.PubMedGoogle Scholar
  146. Snyder, D. S., Raine, C., Farooq, M., and Norton, W. T., 1980, The bulk isolation of oligodendroglia from whole rat forebrain: A new procedure using physiologic media, J. Neurochem. 34: 1614–1621.PubMedGoogle Scholar
  147. Snyder, E. Y., and Kim, S. U., 1979, Hormonal requirements for neuronal: sirvival in culture; Neurosci. Lett. 13: 225–230.PubMedGoogle Scholar
  148. Sobue, G., Kreider, B. Q., Asbury, A. K., and Pleasure, D., 1983, Specific and potent mitogenic effect of axolemmal fraction on Schwann cells from rat sciatic nerves in serum-containing and defined media, Brain Res. 280: 263–275.PubMedGoogle Scholar
  149. Steck, A. J., and Perruisseau, G., 1980, Characterization of membrane markers of isolated oligodendrocytes and clonal lines of the nervous sytem, J. Neurol. Sci. 47: 135–144.PubMedGoogle Scholar
  150. Stern, J. R., 1971, A role for acetoacetyl-CoA synthetase in acetoacetate utilization by rat liver cell fractions, Biochem. Biophys. Res. Commun. 44: 1001–1007.PubMedGoogle Scholar
  151. Suzuki, K., and Suzuki, Y., 1970, Globoid cell leucodystrophy (Krabbe’s disease): Deficiency of galactocerebroside beta-galactosidase, Proc. Natl. Acad. Sci. U.S.A. 66: 302–309.PubMedGoogle Scholar
  152. Szuchet, S., Stefansson, K., Wollmann, R. L., Dawson, G., and Arnason, B. G. W., 1980, Main- tenance of isolated oligodendrocytes in long-term culture, Brain Res. 200: 151–164.PubMedGoogle Scholar
  153. Tennekoon, G. I., Cohen, S. R., Price. D. L., and McKhann, G. M., 1977, Myelinogenesis in optic nerve: A morphological, autoradiographic and biochemical analysis, J. Cell Biol. 72: 604–616.Google Scholar
  154. Tennekoon, G. I., Kishimoto, Y., Singh, I., Nonaka, G., and Bourre, J. M., 1980, The differentiation of oligodendrocytes in the rat optic nerve, Dev. Biol. 79: 149–158.PubMedGoogle Scholar
  155. Trapp, B. D., Dwyer, B., and Bernsohn, J., 1975, Light and electron microscopic examination of isolated neurons, astrocytes and oligodendrocytes, Neurobiology 5: 235–248.PubMedGoogle Scholar
  156. Trapp, B. D., Honeggar, P., Richelson, E., and Webster, H. de F., 1979, Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures, Brain Res. 160: 117–130.PubMedGoogle Scholar
  157. Volpe, J., 1979, Microtubules and the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 254: 2568–2571.PubMedGoogle Scholar
  158. Volpe, J., and Obert, K. A., 1981, Cytoskeletal structures and 3-hydroxy-3-methylglutaryl coenzyme A reductase in C-6 glial cells: A role formicrofilaments, J. Biol. Chem. 256: 2016–2021.PubMedGoogle Scholar
  159. Walravens, P., and Chase, H. P., 1969, Influence of thyroid on formation of myelin lipids, J. Neurochem. 16: 1477–1484.PubMedGoogle Scholar
  160. Weinberg, E. L., and Spencer, P. S., 1979, Studies on the control of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons, Brain Res. 162: 273–279.PubMedGoogle Scholar
  161. Witter, B., and Debuch, H., 1982, On the phospholipid metabolism of glial cell primary cultures: Cell characterization and their utilization of 1-alkylglycerophosphoethanolamine, J. Neurochem. 38: 1029–1037.PubMedGoogle Scholar
  162. Wolfe, R. A., Sato, G. H., and McClure, D. B., 1980, Continuous culture of rat C6 glioma in serum-free medium, J. Cell Biol. 87: 434–441.PubMedGoogle Scholar
  163. Wood, P. M., and Bunge, R. P., 1975, Evidence that sensory axons are mitogenic for Schwann cells, Nature (London) 256: 663–664.Google Scholar
  164. Wood, P., Okada, E., and Bunge, R., 1980, The use of networks of dissociated rat dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture, Brain Res. 196: 247252.Google Scholar
  165. Wood, P., Szuchet, S., Williams, A. K., Bunge, R. P., and Arnason, B. G. W., 1983, CNS myelin formation in cocultures of rat neurons and lamb oligodendrocytes, Trans. Am. Soc. Neurochem. 14: 212.Google Scholar
  166. Wu, P. S., and Ledeen, R. W., 1980, Evidence for the presence of CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolamine-phosphotransferase in rat central nervous system myelin, J. Neurochem. 35: 659–666.PubMedGoogle Scholar
  167. Yavin, Z., and Yavin, E., 1977, Synaptogenesis and myelinogensis in dissociated cerebral cells from rat embryo on polylysine coated surfaces, Exp. Brain Res. 29: 137–147.PubMedGoogle Scholar
  168. Yeh, Y. Y., Streuli, U. L., and Zee, P., 1977, Ketone bodies serve as important precursors of brain lipids in the developing rat, Lipids 12: 957–964.PubMedGoogle Scholar
  169. Younkin, L. H., and Silberberg, D. H., 1976, Delay of oligodendrocyte differentiation by 5-bromodeoxyuridine (BUdR), Brain Res. 101: 600–605.PubMedGoogle Scholar
  170. Yu, R. K., and Iqbal, K., 1979, Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, olgodendroglia and neurons, J. Neurochem. 32: 293–300.PubMedGoogle Scholar
  171. Yu, R. K., Ledeen, R. W., and Eng, L. F., 1974, Ganglioside abnormalities in multiple sclerosis, J. Neurochem. 23: 169–174.PubMedGoogle Scholar
  172. Zuppinger, K., Wiesmann, U., Siegrist, H. P., Shafer, T., Sandru, L., Schwarz, H. P., and Herschkowitz, N., 1981, Effect of glucose deprivation on sulfatide synthesis and oligodendrocytes in cultured brain cells of newborn mice, Pediatr. Res. 15: 319–325.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • David Pleasure
    • 1
  • Seung U. Kim
    • 2
  • Donald H. Silberberg
    • 1
  1. 1.Children’s Hospital of Philadelphia and Departments of Neurology and PediatricsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of NeurologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations