Protein Metabolism of Oligodendroglial Cells In Vivo

  • Joyce A. Benjamins
Part of the Advances in Neurochemistry book series (ANCH, volume 5)


The oligodendroglial cell and its associated myelin membranes have provided a unique opportunity to assess the in vivo protein metabolism of a given cell type in situ among a mixture of cell types. This is because the oligodendroglial cell synthesizes in large amounts several proteins that are virtually specific for oligodendroglia and myelin. Few attempts have been made to measure the overall rate of protein synthesis in oligodendroglia compared to other cell types or to examine individual proteins in the oligodendroglial cell body. Thus, this chapter will emphasize what is known about the metabolism of the oligodendroglial proteins in which myelin is enriched. We can trace our ability to examine these proteins to the development of methods for isolation of myelin and sodium dodecyl sulfate (SDS) gel electrophoresis. These methods, coupled with isotope tracer methods, have enabled us to learn a great deal about the metabolism of those oligodendroglial proteins that are deposited in myelin.


Myelin Basic Protein Basic Protein Myelin Sheath Myelin Protein Oligodendroglial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramsky, O., Lisak, R.P., Pleasure, D., Gilden, D.H., and Silberberg D. H., 1978, Immunologic characterization of oligodendroglia, Neurosci. Lett. 9:311–316.Google Scholar
  2. Adams, D. H., and Fox, M. E., 1969, The homogeneity and protein composition of rat brain myelin, Brain Res. 14: 647–661.PubMedGoogle Scholar
  3. Adams, D. H. and Osborne, J., 1973, A developmental study of the relationship between the protein components of rat CNS myelin, Neurobiology 3: 91–112.PubMedGoogle Scholar
  4. Agrawal, H. C., and Hartman, B. K., 1980, Proteolipid protein and other proteins of myelin, in: Proteins of the Nervous System, 2nd ed. ( R. A. Bradshaw and D. M. Schneider, eds.), pp. 145–169, Raven Press, New York.Google Scholar
  5. Agrawal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M., 1970, The identity of a myelin-like fraction isolated from developing brain, Biochem. J. 120: 635–642.PubMedGoogle Scholar
  6. Agrawal, H. C., Trotter, J. L., Burton, R. M., and Mitchell, R. F., 1974, Evidence for a precursor role of a myelin subfraction, Biochem. J. 140: 99–109.PubMedGoogle Scholar
  7. Agrawal, H. C., O’Connell, K., Randle, C. L., and Agrawal, D., 1982a, Phosphorylation in vivo of four basic proteins of rat brain myelin, Biochem. J. 201: 39–47.PubMedGoogle Scholar
  8. Agrawal, H. C., Randle, C. L., and Agrawal, D., 1982b, In vivo acylation of rat brain myelin proteolipid protein, J. Biol. Chem. 257: 4588–4592.Google Scholar
  9. Autilio, L. A., Norton, W. T., and Terry, R. D., 1964, The preparation and some properties of purified myelin from the central nervous system, J. Neurochem. 11: 17–26.PubMedGoogle Scholar
  10. Autilio-Gambetti, L., Gambetti, P., and Shafer, B., 1975, Glial and neuronal contribution to proteins and glycoproteins recovered in myelin fractions, Brain Res. 84: 336–340.PubMedGoogle Scholar
  11. Banik, N. L., and Davison, A. N., 1969, Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain, Biochem. J. 115: 1051–1062.PubMedGoogle Scholar
  12. Banik, N. L., and Smith, M. E., 1977, Protein determinants of myelination in different regions of developing rat central nervous system, Biochem. J. 162: 247–255.PubMedGoogle Scholar
  13. Banik, N. L., Davison, A. N., Ramsey, R. B., and Scott, T., 1974, Protein composition in developing human brain myelin, Dev. Psychobiol. 7: 539–546.PubMedGoogle Scholar
  14. Barbarese, E., Braun, P. E., and Carson, J. H., 1977, Identification of prelarge and presmall basic proteins in mouse myelin and their structural relationship to large and small basic proteins, Proc. Natl. Acad. Sci. U.S.A. 74: 3360–3364.PubMedGoogle Scholar
  15. Barbarese, E., Carson, J. H., and Braun, P. E., 1978, Accumulation of the four myelin basic proteins in mouse brain during development, J. Neurochem. 31: 779–782.PubMedGoogle Scholar
  16. Benjamins, J. A., and Morell, P., 1978, Proteins of myelin and their metabolism, Neurochem. Res. 3: 137–174.PubMedGoogle Scholar
  17. Benjamins, J. A., and Smith, M. E., 1977, Metabolism of myelin, in Myelin ( P. Morell, ed.) pp. 233–270, Plenum Press, New York.Google Scholar
  18. Benjamins, J. A., Herschkowitz, N., Robinson, J., and McKhann, G. M., 1971, The effects of inhibitors of protein synthesis on incorporation of lipids into myelin, J. Neurochem. 18: 729–728.PubMedGoogle Scholar
  19. Benjamins, J. A., Miller, K., and McKhann, G. M., 1973, Myelin subfractions in developing rat brain: Characterization and sulfatide metabolism, J. Neurochem. 20: 1589–1603.PubMedGoogle Scholar
  20. Benjamins, J. A., Jones, M., and Morell, P., 1975, Appearance of newly synthesized proteins in myelin of young rats, J. Neurochem. 24: 1117–1122.PubMedGoogle Scholar
  21. Benjamins, J. A., Gray, M., and Morell, P., 1976, Metabolic relationships between myelin subfractions: Entry of proteins, J. Neurochem. 27: 571–575.PubMedGoogle Scholar
  22. Benjamins, J. A., Iwata, R., and Hazlett, J., 1978, Kinetics of entry of proteins into the myelin membrane, J. Neurochem. 31: 1077–085.PubMedGoogle Scholar
  23. Benjamins, J. A., Hadden, T., and Skoff, R. P., 1982, Cerebroside sulfotransferase in Golgi-enriched fractions from rat brain, J. Neurochem. 38: 233–241.PubMedGoogle Scholar
  24. Berthold, C. H., 1978, Morphology of normal peripheral axons, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 3–63, Raven Press, New York.Google Scholar
  25. Bizzozero, O. A., Pasquini, J. M., and Soto, E. F., 1982, Differential effect of colchicine upon the entry of proteins into myelin and myelin-related membranes, Neurochem. Res. 7: 1415–1425.PubMedGoogle Scholar
  26. Bourne, J. M., Pollet, S., Daudu, O., Le Saux, F., and Baumann, N., 1977, Myelin consists of a continuum of particles of different density with varying lipid composition: Major differences are found between normal mice and quaking mutants, Biochimie 59: 819–824.Google Scholar
  27. Bourre, J. M., Jacque, C., Delassalle, A., Nguyen-Legros, J., Dumont, O., Lachapelle, F., Raoul, M., Alvarez, C., and Baumann, N., 1980, Density profile and basic protein measurements in the myelin range of particulate material from normal developing mouse brain and from neurological mutants (jimpy; quaking; trembler; shiverer and its mld allele) obtained by zonal centrifugation, J. Neurochem. 35: 458–464.PubMedGoogle Scholar
  28. Braun, P. E., and Brostoff, S. W., 1977, Proteins of myelin, in: Myelin (R. Morell, ed.) pp. 201231, Plenum Press, New York.Google Scholar
  29. Brostoff, S. W. and Eylar, E. H., 1972, Localization of methylated arginine in the AI protein from myelin, Proc. Natl. Acad. Sci. U.S.A. 68: 765–769.Google Scholar
  30. Cammer, W., and Norton, W. T., 1976, Disc gel electrophoresis of myelin proteins: New observations on development of the intermediate proteins (DM-20), Brain Res. 109: 643–648.PubMedGoogle Scholar
  31. Campagnoni, A. T., and Hunkeler, M. J., 1980, Synthesis of the myelin proteolipid protein in developing mouse brain, J. Neurobiol. 11: 355–364.PubMedGoogle Scholar
  32. Campagnoni, A. T., Campagnoni, C. W., Dutton, G. R., and Cohen, J., 1976, A regional study of developing rat brain: The accumulation and distribution of proteolipid protein, J. Neurobiol. 7: 313–324.PubMedGoogle Scholar
  33. Campagnoni, A. T., Carey, G. D., and Yu, Y. T., 1980. In vitro synthesis of the myelin basic proteins: Subcellular site of synthesis, J. Neurochem. 36: 677–66.Google Scholar
  34. Campagnoni, C. W., Carey, G. D., and Campagnoni, A. T., 1978, Synthesis of myelin basic proteins in the developing mouse brain, Arch. Biochem. Biophys. 190: 118–125.PubMedGoogle Scholar
  35. Carnegie, P. R., and Moore, W. J., 1980, Myelin basic protein, in: Proteins of the Nervous System, 2nd ed. ( R. A. Bradshaw and D. M. Schneider, eds.), pp. 119–143, Raven Press, New York.Google Scholar
  36. Carnegie, P. R., Kemp, B. E., Dunkley, P. R., and Murray, A. W., 1973, Phosphorylation of myelin basic protein by an adenosine 3’-5’-cyclic monophosphate-dependent protein kinase, Biochem. J. 135: 569–572.PubMedGoogle Scholar
  37. Carson, J. S., Nielson, S., and Barbarese, E., 1983, Developmental regulation of myelin basic protein expression in mouse brain, Dev. Biol. 96: 485–492.PubMedGoogle Scholar
  38. Clausen, J., 1969, Gray—white matter differences, in: Handbook of Neurochemistry, Vol. 1 ( A. Lajtha, ed.) pp. 273–300, Plenum Press, New York.Google Scholar
  39. Cohen, S. R., and Guarnieri, M., 1976, Immunochemical measurement of myelin basic protein in developing rat brain: An index of myelin synthesis, Dev. Biol. 49: 294–299.PubMedGoogle Scholar
  40. Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D., 1982, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol. 95: 598–608.PubMedGoogle Scholar
  41. Danks, D. M., and Matthieu, J. M., 1979, Hypotheses regarding myelination derived from comparisons of myelin subfractions, Life Sci. 24: 1425–1440.PubMedGoogle Scholar
  42. Day, E. D., 1981, Myelin basic protein, in: Contemporary Topics in Molecular Immunology, Vol. 8 ( F. P. Inman and W. J. Mandy, eds.), pp. 1–39, Plenum Press, New York.Google Scholar
  43. Deibler, G. E., and Martenson, R. E., 1973, Chromatographic fractionation of myelin basic proteins: Partial characterization and methylarginine content of the multiple forms, J. Biol. Chem. 248: 2392–2396.PubMedGoogle Scholar
  44. Deshmukh, D. S., Bear, W. D., and Soifer, D., 1978, Isolation and characterization of an enriched Golgi fraction from rat brain, Biochim. Biophys. Acta 542: 284–295.PubMedGoogle Scholar
  45. Des Jardins, K. C., and More11, P., 1983, Metabolism of phosphate and methyl groups of myelin basic proteins from rat central nervous system, J. Cell Biol. 97: 438–446.Google Scholar
  46. Detering, N. K., and Wells, M. A., 1976, The non-synchronous synthesis of myelin components during early stages of myelination in the rat optic nerve, J. Neurochem. 26: 253–257.PubMedGoogle Scholar
  47. DeVries, G. H., Norton, W. T., and Raine, C. S., 1972, Axons: Isolation from mammalian CNS, Science 175: 1370–1371.PubMedGoogle Scholar
  48. D’Monte, B., Mela, P., and Marks, N., 1971, Metabolic instability of myelin protein and proteolipid fractions, Eur. J. Biochem. 23: 355–365.PubMedGoogle Scholar
  49. Droz, B., and Koenig, H. L., 1970, Localization of protein metabolism in neurons, in: Protein Metabolism of the Nervous System ( A. Lajtha, ed.), pp. 93–108, Plenum Press, New York.Google Scholar
  50. Drummond, R. J., and Dean, G., 1980, Comparison of 2’,3’-cyclic nucleotide 3’-phosphodiesterase and the major component of Wolfgram protein WI, J. Neurochem. 35: 1155–1165.PubMedGoogle Scholar
  51. Druse, M. J., Brady, R. O., and Quarles, R. H., 1974, Metabolism of a myelin-associated glycoprotein in developing rat brain, Brain Res. 76: 423.PubMedGoogle Scholar
  52. Eichberg, J., Whittaker, V. P., and Dawson, R. M. C., 1964, Distribution of lipids in subcellular particles of guinea pig brain, Biochem. J. 92: 91–100.PubMedGoogle Scholar
  53. Einstein, E. R., Dalai, K. B., and Csejtey, J., 1970, Biochemical maturation of the central nervous system. I. Proteins and proteolytic enzyme changes, Brain Res. 18: 35–49.PubMedGoogle Scholar
  54. Endo, T., and Hidaka, H., 1980, Calmodulin dependent phosphorylation of myelin isolated from rabbit brain, Biochem. Biophys. Res. Commun. 97: 553–558.PubMedGoogle Scholar
  55. Eng. L. F., and Noble, E. P., 1968, The maturation of rat brain myelin, Lipids 3: 157–7161.Google Scholar
  56. Fischer, C. A., and Morell, P., 1974, Turnover of proteins in myelin and myelin-like material of mouse brain, Brain Res. 74: 51–65.PubMedGoogle Scholar
  57. Fishman, M. A., Agrawal, H. C., Alexander, A., and Golterman, J., 1975, Biochemical maturation of human central nervous system myelin, J. Neurochem. 24: 689–694.PubMedGoogle Scholar
  58. Folch-Pi, J., and Stoffyn, P. J., 1972, Proteolipids from membrane systems, Ann. N. Y., Acad. Sci. 195: 86–107.Google Scholar
  59. Fujimoto, K., Roots, B. I., Burton, R. M., and Agrawal, H. C., 1976, Morphological and biochemical characterization of light and heavy myelin isolated from developing rat brain, Biochim. Biophys. Acta 426: 659–668.PubMedGoogle Scholar
  60. Giorgi, P. P., and DuBois, H., 1981, Labeling by axonal transport of myelin-associated proteins in the rabbit visual pathway, Biochem. J. 196: 537–545.PubMedGoogle Scholar
  61. Giorgi, P. P., Karlsson, J. O., Sjóstrand, J., and Field, E. J., 1973, Axonal flow and myelin protein in the optic pathway, Nature (London)New Biol. 244: 121–124.Google Scholar
  62. Glasgow, M. S., Quarles, R. H., and Grollman, S., 1972, Metabolism of fucoglycoproteins in the developing rat brain, Brain Res. 42: 129–137.PubMedGoogle Scholar
  63. Greenfield, S., Weise, M. J., Gantt, G., Hogan, E. L., and Brostoff, S. W., 1982, Basic proteins of rodent peripheral nerve myelin: Identification of the 21.5K, 18.5K, 17K, 14K, and P2 proteins, J. Neurochem. 39: 1279–1282.Google Scholar
  64. Haley, J. E., and Ledeen, R. W., 1979, Incorporation of axonally transported substances into myelin lipids, J. Neurochem. 32: 735–742.PubMedGoogle Scholar
  65. Haley, J. E., Samuels F. G., and Ledeen, R. W., 1981, Study of myelin purity in relation to axonal contaminants, Cell. Mol. Neurobiol. 1: 175–187.PubMedGoogle Scholar
  66. Hall, C., and Lim, L., 1981, Developmental changes in the composition of polyadenylated RNA isolated from free and membrane-bound polyribosomes of the rat forebrain, analyzed by translation in vitro, Biochem. J. 196: 327–336.PubMedGoogle Scholar
  67. Hall, C., Mahadevan, L., Whatley, S., Ling, T.-S. and Lim, L., 1982, The polyadenylated RNA directing the synthesis of the rat myelin basic proteins is present in both free and membrane-bound forebrain polyribosomes, Biochem. J. 202: 407–417.PubMedGoogle Scholar
  68. Harford, J. B., Waechter, C. J., and Earl, F. L., 1977, Effect of exogenous dolichyl monophosphate on a developmental change in mannosylphosphoryl-dolichol biosynthesis, Biochem. Biophys. Res. Commun. 76: 1036–1043.PubMedGoogle Scholar
  69. Hartman, B. K., Agrawal, H. C., Agrawal, D., and Kalmbach, S., 1982, Development and maturation of central nervous myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes, Proc. Natl. Acad. Sci. U.S.A., 79: 4217–4220.PubMedGoogle Scholar
  70. Hofteig, J.H., and Druse, M. J., 1976, Metabolism of three subfractions of myelin in developing rats, Life Sci. 18: 543–552.PubMedGoogle Scholar
  71. Jacobson, S., 1963, Sequence of myelinization in the brain of the albino rat. A. Cerebral cortex, thalamus and related structures, J. Comp. Neurol. 121: 5–29.PubMedGoogle Scholar
  72. Johnson, D., Quarles, R. H., and Brady, R. O., 1980, A radioimmunoassay for the myelin-associated glycoprotein, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 1831.Google Scholar
  73. Konat, G., and Clausen, K., 1980, Suppressive effect of triethyllead on entry of proteins into the CNS myelin sheath in vitro, J. Neurochem. 35: 382–387.PubMedGoogle Scholar
  74. Lajtha, A., Toth, J., Fujimoto, K., and Agrawal, H. C., 1977, Turnover of myelin proteins in mouse brain in vivo, Biochem. J. 164: 323–329.PubMedGoogle Scholar
  75. Lane, J. D., and Fagg, G. E., 1980, Protein and glycoprotein composition of myelin subfractions from the developing rat optic nerve and tract, J. Neurochem. 34: 163–171.PubMedGoogle Scholar
  76. Lerner, P., Campagnoni, A. T., and Sampugna, J., 1974, Proteolipids in the developing brains of normal and mutant mice, J. Neurochem. 22: 163–170.PubMedGoogle Scholar
  77. Lim, L., White, J. O., Hall, C., Berthold, W., and Davison, A. N., 1974, Isolation of microsomal poly(A) RNA from rat brain directing the synthesis of the encephalitogenic protein in Xenopus oocytes, Biochim. Biophys. Acta 318: 313–325.Google Scholar
  78. Macklin, W. B., and Lees, M. B., 1982, Solid-phase immunoassays for quantitation of antibody to bovine white matter proteolipid apoprotein, J. Neurochem. 38: 348–355.PubMedGoogle Scholar
  79. Magno-Sumbilla, C., and Campagnoni, A. T., 1977, Factors affecting the electrophoretic analysis of myelin proteins: Application to changes occurring during brain development, Brain Res. 126: 131–148.PubMedGoogle Scholar
  80. Margolis, R. U., 1967, Acid mucopolysaccharides and glycoproteins of bovine whole brain, white matter and myelin, Biochim. Biophys. Acta 141: 91–102.PubMedGoogle Scholar
  81. Matthees, J., and Campagnoni, A. T., 1980, Cell-free synthesis of the myelin basic proteins in a wheat germ system programmed with brain messenger RNA, J. Neurochem. 4: 867–872.Google Scholar
  82. Matthieu, J. M., Quarles, R. H., Poduslo, J. F., Brady, R. O., and Webster, H. De F., 1973, Variation of proteins, enzyme markers and gangliosides in myelin subfractions, Biochim. Biophys. Acta 329: 305–317.PubMedGoogle Scholar
  83. Matthieu, J. M., Brady, R. O., and Quarles, R. H., 1975a, Change in myelin-associated glycoprotein in rat brain during development: Metabolic aspects, Brain Res. 86: 55–65.PubMedGoogle Scholar
  84. Matthieu, J. M., Quarles, R. H., Poduslo, J. F., and Brady, R. O., 19756, [35e] Sulfate incorporation into myelin glycoproteins. Central nervous system, Biochim. Biophys. Acta 392: 159–166.Google Scholar
  85. Matthieu, J. M., Webster, H. D., DeVries, G. H., Corthay, S., and Koellreutter, B., 1978, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intraocular and intracranial labeling, J. Neurochem. 31: 93–102.PubMedGoogle Scholar
  86. Matus, A. DePatris, S., and Raff, M. D., 1973, Mobility of concanavalin-A receptors in myelin and synaptic membranes, Nature (London) New Biol. 244: 278–280.Google Scholar
  87. Mcllwain, D. L., 1974, Localization of the acetylcholinesterase-containing membranes in purified myelin fractions, Brain Res. 69: 182–184.Google Scholar
  88. McIntyre, L. J., Quarles, R. H., and Brady, R. O., 1978. The effect of trypsin on myelin-associated glycoprotein, Trans. Am. Soc. Neurochem. 9: 106.Google Scholar
  89. McIntyre, L. J., Quarles, R. H., and Brady, R. O., 1979, Lectin-binding proteins in centralnervous-system myelin: Detection of glycoproteins of purified myelin on polyacrylamide gels by 3H concanavalin A binding, Biochem. J. 183: 205–212.PubMedGoogle Scholar
  90. McMillan, P. N., Williams, N. I., Kaufman, B., and Day, E. D., 1972, The isolation and biochemical characterization of three subfractions of myelin from central nervous tissue of the adult rat, J. Neurochem. 19: 1839–1848.PubMedGoogle Scholar
  91. Miyamoto, E., and Kakiuchi, S., 1974, In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3’,5’-monphosphate-dependent protein kinases in brain, J. Biol. Chem. 249: 2769–2777.Google Scholar
  92. Morell, P., Greenfield, S., Costantino-Ceccarini, E., and Wisniewski, H., 1972, Changes in the protein composition of mouse brain myelin during development, J. Neurochem. 19: 254–5254.Google Scholar
  93. Morré, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559: 71–152.PubMedGoogle Scholar
  94. Muller, H. W., Clapshaw, P. A., and Seifert, W., 1981, Characterization of 2’:3’-cyclic nucleotide 3’-phosphodiesterase: Limited proteolytic digestion, plant lectin affinity chromatography and immunological identification, J. Neurochem. 36: 2004–2013.PubMedGoogle Scholar
  95. Norton, W. T., 1971, Recent developments in the investigation of purified myelin, in: Chemistry and Brain Development, Vol. 13 ( R. Paoletti and A. N. Davison, eds), pp. 327–337, Plenum Press, New York.Google Scholar
  96. Norton, W. T., 1981, Formation, structure, and biochemistry of myelin, in: Basic Neurochemistry, 3rd ed. (G. J. Siegel, R. W., Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 63–92, Little Brown, Boston.Google Scholar
  97. Norton, W T., 1983, Recent advances in the neurobiology of oligodendroglia, in: Advances in Cellular Neurobiology, Vol. 4 ( S. Fedoroff and L. Hertz, eds.), pp. 3–55, Academic Press, New York.Google Scholar
  98. Norton, W. T., and Poduslo, S. E., 1973, Myelination in rat brain: Changes in myelin composition during brain maturation, J. Neurochem. 21: 759–773.PubMedGoogle Scholar
  99. Nussbaum, J. L., and Mandel, P., 1973, Brain proteolipids in neurological mutant mice, Brain Res. 61: 295–310.PubMedGoogle Scholar
  100. Pellkofer, R., and Jatzkewitz, H., 1976, Alteration of myelin biosynthesis in slices of rabbit spinal cord by antiserum to myelin basic protein and by puromycin, J. Neurochem. 27: 351–364.PubMedGoogle Scholar
  101. Pereyra, P. M., and Braun, P. E., 1983, studies on subcellular fractions which are involved in myelin membrane assembly: Isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis, J. Neurochem. 41: 957–973.Google Scholar
  102. Pereyra, P. M., Braun, P. E., Greenfield, S., and Hogan, E. L., 1983, Studies on subcellular fractions which are involved in myelin assembly: Labeling of myelin proteins by a double radioisotope approach indicates developmental relationships, J. Neurochem. 41: 974–988.PubMedGoogle Scholar
  103. Petrali, E. H., Thiessen, B. J., and Sulakhe, V., 1980, Magnesium-ion dependent, calcium-ion stimulated, endogenous protein kinase-catalyzed phosphorylation of basic proteins in myelin fraction of rat brain white matter, Int. J. Biochem. 11: 21–36.PubMedGoogle Scholar
  104. Poduslo, J. F., 1981, Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin, J. Neurochem. 36: 1924–1931.PubMedGoogle Scholar
  105. Poduslo, J. F., and Rodbard, D., 1980, Molecular weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis, Anal. Biochem. 101: 394–406.PubMedGoogle Scholar
  106. Poduslo, J. F., Harman, J. L., and McFarlin, D. E., 1980, Lectin receptors in central nervous system myelin, J. Neurochem. 34: 1733–1744.PubMedGoogle Scholar
  107. Poduslo, S. E., McFarland, H. F., and McKhann, G. M., 1977, Antiserums to neurons and to oligodendroglia from mammalian brain, Science 197: 270–272.PubMedGoogle Scholar
  108. Quarles, R. H., 1980a, The biochemical and morphological heterogeneity of myelin and myelin-related membranes, in: Biochemistry of Brain ( S. Kumar, ed.), pp. 81–102, Pergamon Press, Oxford.Google Scholar
  109. Quarles, R. H., 1980b, Glycoproteins from central and peripheral myelin, in: Myelin: Chemistry and Biology ( G. A. Hashim, ed.) pp. 55–77, Alan R. Liss, New York.Google Scholar
  110. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973a. Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177–1191.PubMedGoogle Scholar
  111. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973b, Myelin-associated glycoprotein: A developmental change, Brain Res. 58: 506–509.PubMedGoogle Scholar
  112. Quarles, R. H., McIntyre, L. J., and Pasnak, C. F., 1979, Lectin-binding proteins in centralnervous-system myelin: Binding of glycoproteins in purified myelin to immobiled lectins, Biochem. J. 183: 213–226.PubMedGoogle Scholar
  113. Ramsey, J. C., and Steele, W. J., 1977, Quantitative isolation and properties of nearly homogeneous populations of undergraded free and bound polysomes from rat brain, J. Neurochem. 28: 517–527.PubMedGoogle Scholar
  114. Rapaport, R. N., Benjamins, J. A., and Skoff, R. P., 1982, Effects of monensin on assembly of Po protein into peripheral nerve myelin, J. Neurochem. 39: 1101–1110.PubMedGoogle Scholar
  115. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195: 743–753.PubMedGoogle Scholar
  116. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins into membranes and organelles, J. Cell Biol. 91: 637–646.Google Scholar
  117. Sabri, M. I., Bone, A. H., and Davison, A. N., 1974, Turnover of myelin and other structural proteins in the developing rat brain. Biochem. J. 142: 499–507.PubMedGoogle Scholar
  118. Shapira, R., Wilhelmi, M. R., and Kibler, R. F., 1981, Turnover of myelin proteins of rat brain, determined in fractions separated by sedimentation in a continuous sucrose gradient, J. Neurochem. 36: 1427–1432.PubMedGoogle Scholar
  119. Siegrist, H. P., Burkart, T., Wiesmann, U. N., Herschkowitz, N. N., and Spycher, M. A., 1979, Ceramide-galctosyl transferase and cerebroside-sulfotransferase localisation in Golgi membranes isolated by a discontinuous sucrose gradient of mouse brain microsomes J. Neurochem. 33: 497–504.PubMedGoogle Scholar
  120. Singh, H., and Jungalwala, F. B., 1979, The turnover of myelin proteins in adult rat brain, Int. J. Neurosci. 9: 123–131.PubMedGoogle Scholar
  121. Smith, C. B., Davidsen, L., Deibler, G., Patlak, C., Pettigrew, K.,and Sokoloff, L., 1980, A method for determination of local rates of protein synthesis in brain, Trans Am. Soc. Neurochem. 11: 94.Google Scholar
  122. Smith, M. E., 1972, The turnover of myelin proteins, Neurobiology 2: 35–40.PubMedGoogle Scholar
  123. Smith, M. E., 1973, A regional survey of myelin development: Some compositional and metabolic aspects, J. Lipid Res. 14: 541–511.PubMedGoogle Scholar
  124. Smith, M. E., 1983, Peripheral nervous system myelin: Properties and metabolism, in: Handbook of Neurochemistry, Vol. 3, ( A. Lajtha, ed.), pp. 201–223, Plenum Press, New York.Google Scholar
  125. Smith, M. E., and Hasinoff, C. M., 1971, Biosynthesis of myelin proteins in vitro, J. Neurochem. 18: 739–747.PubMedGoogle Scholar
  126. Sprinkle, T. J., Zaruea, M. E., and McKhann, G. M., 1978a, Activity of 2’,3’-cyclic-nucleotide 3’-phosphodiesterase in regions of rat brain during development: Quantitative relationship to myelin basic protein, J. Neurochem. 30: 309–314.PubMedGoogle Scholar
  127. Sprinkle, T. J., Zaruba, M. E., and McKhann, G. M., 1978b, Radioactive measurement of 2’-3’ -cyclic nucleotide 3’-phosphodiesterase activity in central and peripheral nervous system and in extraneural tissue, Anal, Biochem. 88: 449–456.Google Scholar
  128. Sprinkle, T. J., Wells, M. R., Garver, F. A., and Smith, D. B., 1980, Studies on the Wolfgram high molecular weight CNS myelin proteins: Relationship to 2’,3’-cyclic nucleotide 3’-phosphodiesterase, J. Neurochem. 35: 1200–1208.PubMedGoogle Scholar
  129. Steck, A. J., and Appel, S. H., 1974, Phosphorylation of myelin basic protein, J. Biol. Chem. 249: 5416–5420.PubMedGoogle Scholar
  130. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H., 1978a, Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 5: 2521–2524.Google Scholar
  131. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H., 1978b, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat C.N.S. J. Neurocytol. 7: 251–263.PubMedGoogle Scholar
  132. Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. D., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Natl. Acad. Sci. U.S.A. 76: 1510–1514.PubMedGoogle Scholar
  133. Stoffyn, P., and Folch-Pi, J., 1971, On the type of linkage binding fatty acids present in brain white matter proteolipid apoprotein, Biochem. Biophys. Res. Commun. 44: 157–161.PubMedGoogle Scholar
  134. Tennekoon, G. I., Cohen, S. R., Price, D. L., and McKhann, G. M., 1977, Myelinogenesis in optic nerve: A morphological, autoradiographic, and biochemical analysis, J. Cell Biol. 72: 604–616.PubMedGoogle Scholar
  135. Townsend, L. E., and Benjamins, J. A., 1979, Protein synthesis by free and membrane bound polysomes from brainstem., Trans. Am. Soc. Neurochem. 11: 157.Google Scholar
  136. Townsend, L. E., and Benjamins, J. A., 1983, The effects of monensin on post-translational processing of myelin proteins, J. Neurochem. 40: 1333–1339.PubMedGoogle Scholar
  137. Townsend, L. E., and Benjamins, J. A., 1984, Effects of colchicine and monensin on myelin galactolipids, J. Neurochem. (in press).Google Scholar
  138. Townsend, L. E., Agrawal, D., Benjamins, J. A., and Agrawal, H. C., 1982, Acylation of myelin proteolipid protein in vitro, J. Biol. Chem. 257: 9745–9750.PubMedGoogle Scholar
  139. Traugott, U., Snyder, D. S., Norton, W. T., and Raine, C. S., 1978, Characterization of antioligodendrocyte serum, Ann. Neurol. 4: 431–439.PubMedGoogle Scholar
  140. Trotter, J. L., Lieberman, L., Margolis, F. L., and Agrawal, H. C., 1981, Radioimmunoassay for central nervous system myelin-specific proteolipid protein, J. Neurochem. 36: 68–74.Google Scholar
  141. Waehneldt, T. V., and Linington, C., 1980, Organization and assembly of the myelin membrane in: Neurological Mutations Affecting Myelination (N. Baumann, eds.), Inserm symposium No. 14, pp. 389–412, Elsevier, North-Holland, Amsterdam.Google Scholar
  142. Waehneldt, T. V., and Mandel, 1972, Isolation of rat brain myelin, monitored by polyacrylamide gel electrophoresis of dodecyl sulfate-extracted proteins, Brain Res. 40: 419–432.PubMedGoogle Scholar
  143. Waksman, A., Hubert, P., Cremel, G., Rendon, A., and Burrun, C., 1980, Translocation of proteins through biological membranes: A critical review, Biochim. Biophys. Acta 604: 249–296.Google Scholar
  144. Wickner, W., 1979, The assembly of proteins into biological membranes: The membrane trigger hypothesis, Annu. Rev. Biochem. 48: 23–45.PubMedGoogle Scholar
  145. Wolfgram, F., 1966, A new proteolipid fraction of the nervous system. I. Isolation and amino acid analyses, J. Neurochem. 13: 461–470.PubMedGoogle Scholar
  146. Wolman, M., and Hestrin-Lerner, S., 1960, A histochemical contribution to the study of the molecular morphology of the myelin sheath, J. Neurochem. 5: 114–120.PubMedGoogle Scholar
  147. Wüthrich, C., and Steck, A. J., 1981, A permeability change of myelin membrane vesicles towards cations is induced by MgATP but not by phosphorylation of myelin basic proteins, Biochim. Biophys. Acta 640: 195–206.PubMedGoogle Scholar
  148. Yu, Y. T., and Campagnoni, A. T., 1982, In vitro synthesis of the four myelin basic proteins: Evidence for the lack of a metabolic relationship, J. Neurochem. 39: 1559–1568.Google Scholar
  149. Zimmerman, A. W., Quarles, R. H., Webster, H. De F., Matthieu, J. M., and Brady, R. O., 1975, Characterization and protein analysis of myelin subfractions in rat brain: Developmental and regional comparison, J. Neurochem. 25: 749–757.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Joyce A. Benjamins
    • 1
  1. 1.Department of NeurologyWayne State University School of MedicineDetroitUSA

Personalised recommendations