In Vivo Metabolism of Oligodendroglial Lipids

  • Pierre Morell
  • Arrel D. Toews
Part of the Advances in Neurochemistry book series (ANCH, volume 5)

Abstract

A basic assumption for studies of in vivo lipid metabolism in oligodendroglial cells is that the metabolism of lipids in myelin reflects the activity of these glial cells. This is not a trivial assumption. The cytoplasmic connection between the oligodendroglial cell perikaryon and myelin can be visualized in the developing CNS (Bunge, 1968). However, “connections between these elements have never been demonstrated in a normal adult animal, unlike the PNS counterpart, the Schwann cell” (Raine, 1981). Nevertheless, it is generally assumed that metabolism of the mature myelin sheath (which, as will be documented below, is reasonably vigorous) requires extensive contact with elements of the oligodendroglial-cell perikaryon through cytoplasmic channels. These connections may not be easy to visualize; due to their tortuous courses, it is unlikely that a thin section prepared for electron microscopy will include the complete channel (see Chapter 1 for further discussion).

Keywords

Myelin Sheath Ketone Body Myelin Protein Oligodendroglial Cell Myelin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., and Abood, L. G., 1966, In vivo incorporation of t.-[14C] serine into phospholipids and proteins of the subcellular fractions of developing rat brain, J. Neurochem. 13: 1189–1196.Google Scholar
  2. Abdel-Latif, A. A., and Smith, J. P., 1970, In vivo incorporation of choline, glycerol and orthophosphate into lecithin and other phospholipide of subcellular fractions of rat cerebellum, Biochim. Biophys. Acta 218: 134–140.Google Scholar
  3. Adams, C. W. M., and Davison, A. N., 1959, The occurrence of esterified cholesterol in the developing nervous system, J. Neurochem. 4: 282–289.PubMedGoogle Scholar
  4. Agrawal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M., 1970, The identity of a myelin-like fraction isolated from developing brain, Biochem. J. 120: 635–642.PubMedGoogle Scholar
  5. Agrawal, H. C., Trotter, J. L., Burton, R. M., and Mitchell, R. F., 1974, Metabolic studies on myelin—Evidence for a precursor role of a myelin subfraction, Biochem. J. 140: 99–109.PubMedGoogle Scholar
  6. Ailing, C., and Svennerholm, L., 1969, Concentration and fatty acid composition of cholesteryl esters of normal human brain, J. Neurochem. 16: 751–759.Google Scholar
  7. Ansell, G. B., 1973, Phospholipids and the nervous system, in: Form and Function of Phospholipids ( G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 377–422, Elsevier, New York.Google Scholar
  8. Arienti, G., Brunetti, M., Gaiti, A., Orlando, P., and Porcellati, G., 1976, The contribution of net synthesis and base-exchange reactions in phospholipid biosynthesis, in: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( G. Porcellati, L. Amaducci, and C. Galli, eds.), pp. 63–78, Plenum Press, New York.Google Scholar
  9. Autilio-Gambetti, L., Gambetti, P., and Schafer, B., 1975, Glial and neuronal contribution to proteins and glycoproteins recovered in myelin fractions, Brain Res. 84: 336–340.PubMedGoogle Scholar
  10. Balasurbramanian, A. S., and Bachhawat, B. K., 1965, Formation of cerebroside sulphate from 3’-phosphoadenosine-5’-phosphosulphate in sheep brain, Biochim. Biophys. Acta 106: 218220.Google Scholar
  11. Banik, N. L., and Davison, A. N., 1971, Exchange of sterols between myelin and other membranes of developing rat brain, Biochem. J. 122: 751–758.PubMedGoogle Scholar
  12. Basu, S., Schultz, A. M., Basu, M., and Roseman, S., 1971, Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain, J. Biol. Chem. 246: 4272–4279.PubMedGoogle Scholar
  13. Baumann, N. (ed.), 1980, Neurological Mutations Affecting Myelination, INSERM Symposium No. 14, Elsevier/North-Holland, Amsterdam.Google Scholar
  14. Benjamins, J. A., and Iwata, R., 1979, Kinetics of entry of galactolipids and phospholipids into myelin, J. Neurochem. 32: 921–926.PubMedGoogle Scholar
  15. Benjamins, J. A., and McKhann, G. M., 1973a, [2–3H] Glycerol as a precursor of phospholipids in rat brain: Evidence for lack of recycling, J. Neurochem. 20: 1111–1120.Google Scholar
  16. Benjamins, J. A., and McKhann, G. M., 1973b, Properties and metabolism of soluble lipoproteins containing choline and ethanolamine phospholipids in rat brain, J. Neurochem. 20: 1121–1129.PubMedGoogle Scholar
  17. Benjamins, J. A., and Morell, P., 1977, Assembly of myelin, in: Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain ( S. Roberts, A. Lajtha, and W. H. Gispen, eds.), pp. 183–197, Elsevier/North-Holland, Amsterdam.Google Scholar
  18. Benjamins, J. A., and Smith, M. E., 1977, Metabolism of myelin, in: Myelin ( P. Morell, ed.), pp. 233–270, Plenum Press, New York.Google Scholar
  19. Benjamins, J. A., Herschkowitz, N. Robinson, J., and McKhann, G. M., 1971, The effects of inhibitors of protein synthesis on incorporation of lipids into myelin, J. Neurochem. 18: 729–738.Google Scholar
  20. Benjamins, J. A., Miller, K., and McKhann, G. M., 1973, Myelin subfractions in developing rat brain: Characterization and sulphatide metabolism, J. Neurochem. 20: 1589–1603.PubMedGoogle Scholar
  21. Benjamins, J. A., Guarnieri, M., Sonneborn, M., and McKhann, G. M., 1974, Sulphatide synthesis in isolated oligodendroglial and neuronal cells, J. Neurochem. 23: 751–757.PubMedGoogle Scholar
  22. Benjamins, J. A., Gray, M., and Morell, P., 1976a, Metabolic relationships between myelin subfractions: Entry of proteins, J. Neurochem. 27: 521–575.Google Scholar
  23. Benjamins, J. A., Miller, S. L., and Morell, P., 1976b, Metabolic relationships between myelin subfractions: Entry of galactolipids and phospholipids, J. Neurochem. 27: 565–570.PubMedGoogle Scholar
  24. Benjamins, J. A., Hadden, T., and Skoff, R. P., 1982, Cerebroside sulfotransferase in Golgienriched fractions from rat brain, J. Neurochem. 38: 233–241.PubMedGoogle Scholar
  25. Bennett, G., di Giamberardino, L., Koenig, H. L., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of 3Hfucose and 3H-glucosamine, Brain Res. 60: 129–146.PubMedGoogle Scholar
  26. Berthold, C. H., 1973, Local “demyelination” in developing feline nerve fibers, Neurobiology 3: 339–345.Google Scholar
  27. Berthold, C.-H., 1974, A comparative morphological study of the developing node—paranode region in lumbar spinal roots. II. OTAN-staining, Neurobiology 4: 117–131.PubMedGoogle Scholar
  28. Berthold, C. H., and Hildebrand, C., 1979, Free and esterified cholesterol in developing feline lumbosacral spinal roots, J. Neurochem. 32: 237–240.PubMedGoogle Scholar
  29. Bowen, D. M., and Radin, N. S., 1969a, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in developing rat brain, J. Neurochem. 16: 501–511.PubMedGoogle Scholar
  30. Bowen, D. M., and Radin, N. S., 1969b, Hydrolase activities in brain of neurological mutants: Cerebroside galactosidase, nitrophenyl galactoside hydrolase, nitrophenyl glucoside hydro-lase and sulphatase, J. Neurochem. 16: 457–460.PubMedGoogle Scholar
  31. Bowen, D. M., Davison, A. N., and Ramsey, R.B., 1974, The dynamic role of lipids in the nervous system, Int. Rev. Sci. (Biochem. Ser. 1) 4: 141–179.Google Scholar
  32. Bardy, R. O., Bradley, R. M., Young, O. M., and Kalles, H., 1965, An alternative pathway for the enzymatic synthesis of sphingomyelin, J. Biol. Chem. 240: 3693–3694.Google Scholar
  33. Brammer, M. J., 1978, The protein-mediated transfer of lecithin to sub-fractions of mature and developing rat myelin, J. Neurochem. 31: 1435–1440.PubMedGoogle Scholar
  34. Braun, P. E., Pereyra, P. M., and Greenfield, S., 1980a, Myelin organization and development: A biochemical perspective, in: Myelin: Chemistry and Biology ( G. A. Hashim, ed.), pp. 117, Alan R. Liss, New York.Google Scholar
  35. Braun, P. E., Pereyra, P. M., and Greenfield, S., 19806, Mechanisms of assembly of myelin in mice: A new approach to the problem, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium Vo. 14, pp. 413–421, Elsevier/North-Holland, Amsterdam.Google Scholar
  36. Brenkert, A., and Radin, N. S., 1972, Synthesis of galactocerebroside and glucocerebroside by rat brain: Assay procedures and changes with age, Brain Res. 36: 183–193.PubMedGoogle Scholar
  37. Brunetti, M., diGiamberardino, L., Porcellati, G., and Droz, B., 1981, Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. II. Biochemical study, Brain Res. 219: 73–84.PubMedGoogle Scholar
  38. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev. 48: 197–251.PubMedGoogle Scholar
  39. Burkart, T., Caimi, L., Siegrist, H. P., Herschkowitz, N. N., and Wiesmann, U. N., 1982, Vesicular transport of sulfatide in the myelinating mouse brain: Functional association with liposomes?, J. Biol. Chem. 257: 3151–3156.PubMedGoogle Scholar
  40. Burton, R. M., Sodd, M. A., and Brady, R. O., 1958, The incorporation of galactose into galactolipids, J. Biol. Chem. 233: 1053–1059.PubMedGoogle Scholar
  41. Butler, M., and Morell, P., 1982, Sidedness of phospholipid synthesis on brain membranes, J. Neurochem. 39: 155–164.PubMedGoogle Scholar
  42. Butler, M., and Morell, P., 1983, The role of phosphatidylserine decarboxylase in brain phospholipid metabolism, J. Neurochem. 41: 1446–1454.Google Scholar
  43. Cammer, W., Fredman, R., Rose, A. L., and Norton, W. T., 1976, Brain carbonic anhydrase: Activity in isolated myelin and the effect of hexachlorophene, J. Neurochem. 27: 167–171.Google Scholar
  44. Cammer, W., Sirota, S. R., Zimmerman, T. T., Jr., and Norton, W. T., 1980, 5’-Nucleotidase in rat brain myelin, J. Neurochem. 35: 367–373.Google Scholar
  45. Carey, E. M., and Foster, P. C., 1977, Protein-mediated transfer of phosphatidyl choline to myelin, Biochem. Soc. Trans. 5: 1412–1414.PubMedGoogle Scholar
  46. Cleland, W. W., and Kennedy, E. P., 1960, The enzymatic synthesis of psychosine, J. Biol. Chem. 235: 45–51.PubMedGoogle Scholar
  47. Cochran, F. B., Yu, R. K., and Ledeen, R. W., 1982, Myelin gangliosides in vertebrates, J. Neurochem. 39: 773–779.PubMedGoogle Scholar
  48. Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D., 1982, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol. 95: 598–608.PubMedGoogle Scholar
  49. Costantino-Ceccarini, E., and Morell, P., 1972, Biosynthesis of brain sphingolipids and myelin accumulation in the mouse, Lipids 7: 656–659.PubMedGoogle Scholar
  50. Costantino-Ceccarini, E., and Suzuki, K., 1975, Evidence for presence of UDP-galactose:ceramide galactosyltransferase in rat myelin, Brain Res. 93: 358–362.PubMedGoogle Scholar
  51. Cullen, M. J., and Webster, H. de F., 1977, The effects of low temperature on myelin formation in optic nerves of Xenopus tadpoles, Tissue Cell 9: 1–10.PubMedGoogle Scholar
  52. Curtino, J. A., and Caputto, R., 1974, Enzymic synthesis of cerebroside from glycosylsphingosine and stearoyl-CoA by an embryonic chicken brain preparation, Biochem. Biophys. Res. Commun. 56: 142–147.PubMedGoogle Scholar
  53. Daniel, A., Day, E. D., and Kaufman, B., 1972, Studies on central nervous system myelin, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 490.Google Scholar
  54. Danks, D. M., and Matthieu, J.-M., 1979, Hypotheses regarding myelination derived from comparisons of myelin subfractions, Life Sci. 24: 1425–1440.PubMedGoogle Scholar
  55. Davison, A. N., 1970, The biochemistry of the myelin sheath, in: Myelination ( A. N. Davison and A. Peters, eds.), pp. 80–161, Charles C. Thomas, Springfield, Illinois.Google Scholar
  56. Davison, A. N., Dobbing, J., Morgan, R. S., and Payling-Wright, G., 1958, The deposition and disposal of [4–14C] cholesterol in the brain of growing chickens, J. Neurochem. 3: 39–94.Google Scholar
  57. Deshmukh, D. S., Inoue, T., and Pieringer, R. A., 1971, The association of the galactosyl diglycerides of brain with myelination. II. The inability of the myelin deficient mutant, jimpy mouse, to synthesize galactosyl diglycerides effectively, J. Biol. Chem. 246: 5695–5699.PubMedGoogle Scholar
  58. Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978a, Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin, J. Neurochem. 30: 1191–1193.PubMedGoogle Scholar
  59. Deshmukh, D. S., Bear, W. D., and Soifer, D., 1978b, Isolation and characterization of an enriched Golgi fraction from rat brain, Biochim. Biophys. Acta 542: 284–295.PubMedGoogle Scholar
  60. Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H., 1981, Rapid incorporation in vivo of intracerebrally injected 32Pi into polyphosphoinositides of three subfractions of rat brain myelin, J. Neurochem. 36: 594–601.PubMedGoogle Scholar
  61. Diringer, H., Marggraf, W. D., Koch, M. A., and Anderer, F. A., 1972, Evidence for a new biosynthetic pathway of sphingomyelin in SV40 transformed mouse cells, Biochem. Biophys. Res. Commun. 47: 1345–1352.PubMedGoogle Scholar
  62. Dobbing, J., 1963, The entry of cholesterol into rat brain during development, J. Neurochem. 10: 739–742.Google Scholar
  63. Dorman, R. V., Toews, A. D., and Horrocks, L. A., 1977, Plasmalogenase activities in neuronal perikarya, astroglia and oligodendroglia isolated from bovine brain, J. Lipid Res. 18: 115–117.PubMedGoogle Scholar
  64. Droz, B., and Boyenval, J., 1975, Le réticulum endoplasmique des axones: Son róle probable dans le transport axoplasmique des phospholipides membranaires, J. Microsc. Biol. Cell. 23: 45–46.Google Scholar
  65. Droz, B., Koenig, H. L., and diGiamberardino, L., 1973, Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of 3H-lysine, Brain Res. 60: 93–127.PubMedGoogle Scholar
  66. Droz, B., diGiamberardino, L., Koenig, H. L., Boyenval, J., and Hassig, R., 1978, Axon—myelin transfer of phospholipid components in the course of their axonal transport as visualized by radioautography, Brain Res. 155: 347–353.PubMedGoogle Scholar
  67. Droz, B., Brunetti, M., diGiamberardino, L., Koenig, H. L., and Porcellati, G., 1979, Transfer of phospholipid constituents to glia during axonal transport, Soc. Neurosci. Symp. 4: 344–360.Google Scholar
  68. Droz, B., diGiamberardino, L., and Koenig, H. L., 1981, Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. I. Quantitative radioautographic study, Brain Res. 219: 57–71.PubMedGoogle Scholar
  69. Edmond, J., 1974, Ketone bodies as precursors of sterols and fatty acids in the developing rat, J. Biol. Chem. 249: 72–80.PubMedGoogle Scholar
  70. Edmond, J., and Popjak, G., 1974, Transfer of carbon atoms from mevalonate to n-fatty acids, J. Biol. Chem. 249: 66–71.PubMedGoogle Scholar
  71. Eichberg, J., and Dawson, R. M. C., 1965, Polyphosphoinositides in myelin, Biochem. J. 96: 644–650.PubMedGoogle Scholar
  72. Eichberg, J., and Hauser, G., 1973, The subcellular distribution of phosphoinositides in myelinated and unmyelinated rat brain, Biochem. Biophys. Acta 326: 210–223.PubMedGoogle Scholar
  73. Eng, L. F., and Bignami, A., 1972, Myelin proteins in young and adult brains, Trans. Am. Soc. Neurochem. 3: 75.Google Scholar
  74. Eto, Y., and Suzuki, K., 1972, Cholesterol esters in developing rat-brain: Concentration and fatty acid composition, J. Neurochem. 19: 109–115.Google Scholar
  75. Eto, Y., and Suzuki, K., 1973, Cholesterol ester metabolism in rat brain: A cholesterol ester hydrolase specifically localized in the myelin sheath, J. Biol. Chem. 248: 1986–1991.PubMedGoogle Scholar
  76. Farrell, D. F., and McKhann, G. M., 1971, Characterization of cerebroside sulfotransferase from rat brain, J. Biol. Chem. 246: 4694–4702.PubMedGoogle Scholar
  77. Fischer, C. A., and Morell, P., 1974, Turnover of proteins in myelin and myelin-like material of mouse brain, Brain Res. 74: 51–65.PubMedGoogle Scholar
  78. Fleischer, B., 1977, Localization of some glycolipid glycosylating enzymes in the Golgi apparatus of rat kidney, J. Supramol. Struct. 7: 79–89.PubMedGoogle Scholar
  79. Freysz, L., and Horrocks, L. A., 1980, Regulation of the metabolism of myelin phospholipids, in: Neurological Mutations Affecting Myelination (N. A. Baumann, ed.), INSERM Symposium No. 14, pp. 223–230, Elsevier/North-Holland, Amsterdam.Google Scholar
  80. Freysz, L., and Mandel, P., 1980, Turnover of molecular species of sphingomyelin in microsomes and myelin of rat brain, J. Neurochem. 34: 305–308.PubMedGoogle Scholar
  81. Freysz, L., Horrocks, L. A., and Mandel, P., 1980, Activities of enzymes synthesizing diacyl, alkylacyl, and alkenylacyl glycerophosphoethanolamine and glycerophosphocholine during development of chicken brain, J. Neurochem. 34: 963–969.PubMedGoogle Scholar
  82. Fujino, Y., Nakano, M., Negishi, T., and Ito, S., 1968, Substrate specificity for ceramide in the enzymatic formation of sphingomyelin, J. Biol. Chem. 243: 4650–4651.PubMedGoogle Scholar
  83. Fumigalli, R., Smith, M. E., Urna, G., and Paoletti, R., 1969, The effect of hypocholesteremic agents on myelinogenesis, J. Neurochem. 16: 1329–1339.Google Scholar
  84. Gatt, S., and Barenholz, Y., 1973, Enzymes of complex lipid metabolism, Annu. Rev. Biochem. 42: 61–90.PubMedGoogle Scholar
  85. Gonzalez-Sastre, F., Eichberg, J., and Hauser, G., 1971, Metabolic pools of polyphosphoinositides in rat brain, Biochim. Biophys. Acta 248: 96–104.PubMedGoogle Scholar
  86. Hajra, A., 1969, Biosynthesis of alkyl-ether containing lipid from dihydfoxyacetone phosphate, Biochem. Biophys. Res. Commun. 37: 486–492.PubMedGoogle Scholar
  87. Hajra, A. K., and Radin, N. S., 1963, In vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain, J. Lipid Res. 4: 448–453.Google Scholar
  88. Haley, J. E., and Ledeen, R. W., 1979, Incorporation of axonally transported substances into myelin lipids, J. Neurochem. 32: 735–742.PubMedGoogle Scholar
  89. Hammarström, S., 1972a, On the biosynthesis of cerebrosides: Non-enzymatic N-acylation of psychosine by stearoyl coenzyme A, FEBS Lett. 21: 259–263.PubMedGoogle Scholar
  90. Hammarström, S., 1972b, On the biosynthesis of cerebrosides containing non-hydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Commun. 45: 468–475.Google Scholar
  91. Hammarström, S., and Samuelsson, B., 1972, On the biosynthesis of cerebrosides containing 2hydroxy acids: Mass spectrometric evidence for biosynthesis via the ceramide pathway, J. Biol. Chem. 247: 1001–1011.PubMedGoogle Scholar
  92. Harvey, M. S., Wirtz, K. W. A., Kamp, H. H., Zegers, B. J. M., and Van Deenen, L. L. M., 1973, A study on phospholipid exchange proteins present in the soluble fractions of beef liver and brain, Biochim. Biophys. Acta 323: 234–239.PubMedGoogle Scholar
  93. Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem. J. 122: 13–18.PubMedGoogle Scholar
  94. Hawthorne, J. N., and Kai, M., 1970, Metabolism of phosphoinositides, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.), pp. 491–508, Plenum Press, New York.Google Scholar
  95. Hayes, L., and Jungalwala, F. B., 1976, Synthesis and turnover of cerebrosides and phosphatidyl serine of myelin and microsomal fractions of adult and developing rat brain, Biochem. J. 160: 195–204.PubMedGoogle Scholar
  96. Hendrickson, H. S., and Reinertsen, J. L., 1971, Phosphoinositide interconversion: A model for control of Na+ and K+ permeability in the nerve axon membrane, Biochem. Biophys. Res. Commun. 44: 1258–1264.PubMedGoogle Scholar
  97. Hennacy, D. M., and Horrocks, L. A., 1978, Recent developments in the turnover of proteins and lipids in the myelin and other plasma membranes in the central nervous system, Bull. Mol. Biol. Med. 3: 207–221.Google Scholar
  98. Herschkowitz, N., McKhann, G. M., Saxena, S., and Shooter, E. M., 1968, Characterization of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 15: 1181–1188.PubMedGoogle Scholar
  99. Herschkowitz, N., McKhann, G. M., Saxena, S., Shooter, E. M., and Herndon, R M., 1969, Synthesis of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 16: 1049–1057.PubMedGoogle Scholar
  100. Hildebrand, C., and Berthold, C.-H., 1977, Free and esterifield cholesterol in developing feline white matter, Lipids 12: 711–716.PubMedGoogle Scholar
  101. Hildebrand, J., Stoffyn, P., and Hauser, G., 1970, Biosynthesis of lactosyl-ceramide by rat brain preparations and comparisons with the formation of ganglioside GM, and psychosine during development, J. Neurochem. 17: 403–411.PubMedGoogle Scholar
  102. Hirano, A., and Dembitzer, H., 1967, Structural analysis of the myelin sheath in the central nervous system, J. Cell Biol. 34: 555–567.PubMedGoogle Scholar
  103. Hirata, F. and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209: 1082–1090.PubMedGoogle Scholar
  104. Hogan, E. L., 1977, Animal models of genetic disorders of myelin, in: Myelin ( P. Morell, ed.), pp. 489–515, Plenum Press, New York.Google Scholar
  105. Horrocks, L. A. and Harder, H. W., 1983, Fatty acids and cholesterol, in: Handbook of Neurochemistry, Vol. 3, 2nd ed. ( A. Lajtha, ed.), pp. 1–16, Plenum Press, New York.Google Scholar
  106. Horrocks, L. A., and Sharma, M., 1982, Plasmalogens and 0-alkyl glycerophospholipids, in: Phospholipids ( J. N. Hawthorne and G. B. Ansell, eds), pp. 51–93, Elsevier, Amsterdam.Google Scholar
  107. Horrocks, L. A., Meckler, R. J., and Collins, R. L., 1966, Variations in the lipid composition of mouse brain myelin as a function of age, in: Variations in the Chemical Composition of the Nervous System as Determined by Development and Genetic Factors ( G. B. Ansell, ed.), p. 46, Pergamon Press, Oxford.Google Scholar
  108. Horrocks, L. A., Toews, A. D., Thompson, D. K., and Chin, J. Y., 1976, Synthesis and turnover of brain phosphoglycerides—Results, methods of calculation and interpretation, in: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( G. Porcellati, L. Amaducci, and C. Galli, eds.), pp. 37–54, Plenum Press, New York.Google Scholar
  109. Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D’Amato, R. A., and Krakowka, S., 1978, Plasmalogenase is activated in early demyelinating lesions, in: Myelination and Demyelination ( J. Palo, ed.), pp. 423–437, Plenum Press, New York.Google Scholar
  110. Hoshi, M., and Kishimoto, Y., 1973, Synthesis of cerebronic acid from lignoceric acid by rat brain preparation: Some properties and distribution of the a-hydroxylation system, J. Biol. Chem. 248: 4123–4130.PubMedGoogle Scholar
  111. Hübscher, G., 1962, Metabolism of phospholipide. VI. The effect of metal ions on the incorporation of L-serine into phosphatidyl-serine, Biochim. Biophys. Acta 57: 555–561.PubMedGoogle Scholar
  112. Igarashi, M., and Suzuki, K., 1977, Solubilization and characterization of the rat brain cholesterol ester hydrolase localized in the myelin sheath, J. Neurochem. 28: 729–738.PubMedGoogle Scholar
  113. Inoue, T., Deshmukh, D. S., and Pieringer, R. A., 1971, The association of the galactosyl diglycerides of brain with myelination. I. Changes in the concentration of monogalactosyl diglyceride in the microsomal and myelin fractions of brain of rats during development, J. Biol. Chem. 246: 5688–5694.PubMedGoogle Scholar
  114. Jungalwala, F. B., 1974a, Synthesis and turnover of cerebroside sulfate of myelin in adults and developing rat brain, J. Lipid Res. 15: 114–123.PubMedGoogle Scholar
  115. Jungalwala, F. B., 1974b, The turnover of myelin phosphatidylcholine and sphingomyelin in the adult rat brain, Brain Res. 78: 99–108.PubMedGoogle Scholar
  116. Kennedy, E. P., 1961, Biosynthesis of complex lipids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20: 934–940.Google Scholar
  117. Kishimoto, Y., Davis, W. E., and Radin, N. S., 1965, Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides, and sulfatides as a function of age, J. Lipid Res. 6: 525–531.PubMedGoogle Scholar
  118. Kobayashi, T., Yamanaka, T., Jacobs, J. M., Teixeira, F., and Suzuki, K., 1980, The twitcher mouse: An enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease), Brain Res. 202: 479–483.PubMedGoogle Scholar
  119. Kopaczyk, K. C., and Radin, N. S., 1965, In vivo conversions of cerebroside and ceramide in rat brain, J. Lipid Res. 6: 140–155.PubMedGoogle Scholar
  120. Koper, J. W., Lopes-Cardozo, M., and Van Golde, L. M. G., 1981, Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo, Biochim. Biophys. Acta 666: 411–417.PubMedGoogle Scholar
  121. Krigman, M. R., and Hogan, E. L., 1976, Undernutrition in the developing rat: Effect upon myelination, Brain Res. 107: 257–273.PubMedGoogle Scholar
  122. Kunishita, T., and Ledeen, R. W., 1984, Phospholipid biosynthesis in myelin: Presence of CTP: Phosphoethanolamine cytidylyltransferase in purified myelin of rat brain, J. Neurochem. 42: 326–333.PubMedGoogle Scholar
  123. Lapetina, E. G., Lunt, G. G., and deRobertis, E., 1970, The turnover of phosphatidylcholine in rat cerebral cortex membranes in vivo, J. Neurobiol. 1: 295–302.Google Scholar
  124. LeBaron, F. N., Sanyal, S., and Jungalwala, F. B., 1981, Turnover rate of molecular species of sphingomyelin in rat brain, Neurochem. Res. 6: 1081–1089.PubMedGoogle Scholar
  125. Ledeen, R. W., and Haley, J. E., 1983, Axon—myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport, Brain Res. 269: 267–275.PubMedGoogle Scholar
  126. Ledeen, R. W., Yu, R. K., and Eng. L. F., 1973, Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component, J. Neurochem. 21: 829–839.PubMedGoogle Scholar
  127. Ledeen, R. W., Cochran, F. B., Yu, R. K., Samuels, F. G., and Haley, J. E., 1980, Gangliosides of the CNS myelin membrane, in: Advances in Experimental Medicine and Biology, Vol. 125, Structure and Function of Gangliosides ( P. Mandel and L. Svennerholm, eds.), pp. 167–176, Plenum Press, New York.Google Scholar
  128. Mallia, A. K., and Radin, N. S., 1977, Proteins in the rat brain cytosol which bind cerebrosides, Trans. Am. Soc. Neurochem. 8: 187.Google Scholar
  129. Marggraf, W. D., and Anderer, F. A., 1974, Alternative pathways in the biosynthesis of sphingomyelin and the role of phosphatidylcholine, CDPcholine and phosphorylcholine as precursors, Hoppe-Seyler’s Z. Physiol. Chem. 355: 803–810.PubMedGoogle Scholar
  130. Matthieu, J.-M., Quarles, R. H., Brady, R. O., and Webster, H. de F., 1973, Variation of proteins, enzyme markers and gangliosides in myelin subfractions, Biochim. Biophys. Acta 329: 305–317.PubMedGoogle Scholar
  131. Matthieu, J.-M., Webster, H. de F., DeVries, G. H., Corthay, S., and Koellreutler, B., 1978, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intra-ocular and intracranial labelling, J. Neurochem. 31: 93–102.PubMedGoogle Scholar
  132. McKhann, G. M., and Ho, W., 1967, The in vivo and in vitro synthesis of sulphatides during development, J. Neurochem. 14: 717–724.PubMedGoogle Scholar
  133. McKhann, G. M., Levy, R., and Ho, W., 1965, Metabolism of sulfatides. I. The effect of galactocerebrosides on the synthesis of sulfatides, Biochem. Biophys. Res. Commun. 20: 109–113.PubMedGoogle Scholar
  134. McMurray, W. C., Strickland, K. P., Berry, J. F., and Rossiter, R. J., 1957, Incorporation of 32P-labeled intermediates into the phospholipids of cell-free preparations of rat brain, Biochem. J. 66: 634–644.PubMedGoogle Scholar
  135. Miller, E. K., and Dawson, R. M. C., 1972a, Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids?, Biochem. J. 126: 805–821.PubMedGoogle Scholar
  136. Miller, E. K., and Dawson, R. M. C., 1972b, Exchange of phospholipids between brain membranes in vitro, Biochem. J. 126: 823–835.PubMedGoogle Scholar
  137. Miller, S. L., and Morell, P., 1978, Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats, J. Neurochem. 31: 771–777.PubMedGoogle Scholar
  138. Miller, S. L., Benjamins, J. A., and Morell, P., 1977, Metabolism of glycerophospholipids of myelin and microsomes in rat brain: Reutilization of precursors, J. Biol. Chem. 252: 4025–4037.PubMedGoogle Scholar
  139. Morell, P., and Radin, N. S., 1969, Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8: 506–512.PubMedGoogle Scholar
  140. Morell, P., and Radin, N. S., 1970, Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes, J. Biol. Chem. 245: 342–350.PubMedGoogle Scholar
  141. Morell, P., Costantino-Ceccarini, E., and Radin, N. S., 1970, The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids, Arch. Biochem. Biophys. 141: 738–748.PubMedGoogle Scholar
  142. Morell, P., Bornstein, M. B., and Raine, C. S., 1981, Diseases involving myelin, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 641–659, Little, Brown, Boston.Google Scholar
  143. Morganstern, R. D., and Abdel-Latif, A. A., 1974, Incorporation of [14C]ethanolamine and [3H] methionine into phospholipids of rat brain and liver in vivo and in vitro, J. Neurobiol. 5: 393–411.PubMedGoogle Scholar
  144. Morré, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559: 71–152.PubMedGoogle Scholar
  145. Moser, H. W., and Karnovsky, M. L., 1959, Studies on the biosynthesis of glycolipides and other lipides of brain, J. Biol. Chem. 234: 1990–1997.PubMedGoogle Scholar
  146. Murad, S., and Kishimoto, Y., 1975, a-Hydroxylation of lignoceric acid to cerebronic acid during brain development: Diminished hydroxylase activity in myelin-deficient mouse mutants, J. Biol. Chem. 250: 5841–5846.Google Scholar
  147. Neskovic, N. M., Nussbaum, J. L., and Mandel, P., 1969, Enzymatic synthesis of psychosine in “Jimpy” mice brain, FEBS Lett. 3: 199–201.PubMedGoogle Scholar
  148. Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1972, Biosynthesis of glycolipids in myelin deficient mutants: Brain glycosyl transferases in jimpy and quaking mice, Brain Res. 42: 147–157.PubMedGoogle Scholar
  149. Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1973, Subcellular and submicrosomal distribution of glycolipid-synthesizing transferases in jimpy and quaking mice, J. Neurochem. 20: 1419–1430.PubMedGoogle Scholar
  150. Norton, W. T., 1974, Isolation of myelin from nerve tissue, in: Methods in Enzymology, Vol. 31 ( S. Fleischer and L. Packer, eds.), pp. 435–444, Academic Press, New York.Google Scholar
  151. Norton, W. T., 1977a, Isolation and characterization of myelin, in: Myelin ( P. Morell, ed.), pp. 161–200, Plenum Press, New York.Google Scholar
  152. Norton, W. T., 1977b, Chemical pathology of diseases involving myelin, in: Myelin ( P. Morell, ed.), pp. 383–407, Plenum Press, New York.Google Scholar
  153. Norton, W. T., 1981, Formation, structure and biochemistry of myelin, in: Basic Neurochemistry ( G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 63–92, Little, Brown, Boston.Google Scholar
  154. Norton, W. T., and Autilio, L. A., 1966, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213–222.PubMedGoogle Scholar
  155. Norton, W. T., and Brotz, M., 1963, New galactolipids of brain: A monoalkyl-monoacyl-glycerylgalactoside and cerebroside fatty esters, Biochem. Biophys. Res. Commun. 12: 198–203.PubMedGoogle Scholar
  156. Norton, W. T., and Poduslo, S. E., 1973a, Myelination in rat brain: Method of myelin isolation, J. Neurochem. 21: 749–757.PubMedGoogle Scholar
  157. Norton, W. T., and Poduslo, S. E., 19736, Myelination in rat brain: Changes in myelin composition during brain maturation, J. Neurochem. 21: 759–773.Google Scholar
  158. Page, M. A., Krebs, H. A., and Williamson, D. H., 1971, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochem. J. 121: 49–53.PubMedGoogle Scholar
  159. Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189: 347–358.PubMedGoogle Scholar
  160. Paltauf, F., and Holasek, A., 1973, Enzymatic synthesis of plasmalogens: Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-phosphoryl-ethanolamine desaturase from mucosa of hamster small intestine, J. Biol. Chem. 248: 1609–1615.PubMedGoogle Scholar
  161. Pasquini, J. M., Gomez, C. J., Najle, R., and Soto, E. F., 1975, Lack of phospholipid transport mechanisms in cell membranes of the CNS, J. Neurochem. 24: 439–443.PubMedGoogle Scholar
  162. Paulus, H., and Kennedy, E. P., 1960, The enzymatic synthesis of inositol monophosphatide, J. Biol. Chem. 235: 1303–1311.PubMedGoogle Scholar
  163. Pereyra, P. M., and Braun, P. E., 1983, Studies on subcellular fractions which are involved in myelin membrane assembly: Isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis, J. Neurochem. 41: 957–973.PubMedGoogle Scholar
  164. Pereyra, P. M., Braun, P. E., Greenfield, S., and Hogan, E. L., 1983, Studies on subcellular fractions which are involved in myelin assembly: Labeling of myelin proteins by a double radioisotope approach indicates developmental relationships, J. Neurochem. 41: 974–988.PubMedGoogle Scholar
  165. Pieringer, J., Rao, G. S., Mandel, P., and Pieringer, R. A., 1977, The association of the sulphogalactosyl-glycerolipids of rat brain with myelination, Biochem. J. 166: 421–428.PubMedGoogle Scholar
  166. Pieringer, R. A., Deshmukh, D. S., and Flynn, T. J., 1973, The association of the galactosyldiglycerides of nerve tissue with myelination, Prog. Brain Res. 40: 397–405.Google Scholar
  167. Pleasure, D. E., and Prockop, D. J., 1972, Myelin synthesis in peripheral nerve in vitro: Sulfatide incorporation requires a transport lipoprotein, J. Neurochem. 19: 283–295.PubMedGoogle Scholar
  168. Pleasure, D., Lichtman, C., Eastman, S., Lieb, M., Abramsky, O., and Silberberg, D., 1979, Acetoacetate and D-(—)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: Extramitochondrial pathway for acetoacetate metabolism, J. Neurochem. 32: 1447–1450.PubMedGoogle Scholar
  169. Poduslo, S. E., 1975, The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain, J. Neurochem. 24: 647–654.PubMedGoogle Scholar
  170. Poduslo, S. E., Miller, K., and McKhann, G. M., 1978, Metabolic properties of maintained oligodendroglia purified from brain, J. Biol. Chem. 253: 1592–1597.PubMedGoogle Scholar
  171. Porcellati, G., Biasion, M. G., and Pirotta, M., 1970, The labeling of brain ethanolamine phos- phoglycerides from cytidine disphosphate ethanolamine in vitro, Lipids 5: 734–742.Google Scholar
  172. Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D., 1971, Base-exchange reactions for the synthesis of phospholipids in nervous tissues: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes, J. Neurochem. 18: 1395–1402.PubMedGoogle Scholar
  173. Porcellati, G., Ceccarelli, B., and Tettamanti, G. (eds.), 1976, Advances in Experimental Medicine and Biology, Vol. 71, Ganglioside Function: Biochemical and Pharmacological Implications, Plenum Press, New York.Google Scholar
  174. Possmayer, F., Meiners, B., and Mudd, J. B., 1973, Regulation by cytidine nucleotides of the acylation of sn-[10.C]glycerol 3-phosphate: Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis de novo in the central nervous system of the rat, Biochem. J. 132: 391–394.Google Scholar
  175. Pullarkat, R. K., Sbaschnig-Agler, M., and Reha, H., 1981, Biosynthesis of phosphatidylserine in rat brain microsomes, Biochim. Biophys. Acta 663: 117–123.Google Scholar
  176. Quarles, R. H., 1978, The biochemical and morphological heterogeneity of myelin and myelin-related membranes, in: Biochemistry of Brain ( S. Kumar, ed.), pp. 81–102, Pergamon Press, Oxford.Google Scholar
  177. Raine, C. S., 1981, Neurocellular anatomy, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 21–47, Little, Brown, Boston.Google Scholar
  178. Ramachandran, C. K., and Shah, S. N., 1977, Studies on mevalonate kinase, phosphomevalonate kinase, and pyrophosphomevalonate decarboxylase in developing rat brain, J. Neurochem. 28: 751–757.PubMedGoogle Scholar
  179. Rambourg, A., and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport, J. Neurochem. 35: 16–25.PubMedGoogle Scholar
  180. Ramsey, R. B., 1977, Effect of extended hypocholesterolemic drug treatment on peripheral and central nervous system sterol content of the rat, Lipids 12: 841–846.PubMedGoogle Scholar
  181. Ramsey, R. B., Jones, J. P., Naqui, S. H. M., and Nicholas, H. J., 1971, The biosynthesis of cholesterol and other sterols by brain tissue. II. A comparison of in vitro and in vivo methods, Lipids 6: 225–232.PubMedGoogle Scholar
  182. Rawlins, F. A., 1973, A time-sequence autoradiographic study of the in vivo incorporation of [1,2–31-I] cholesterol into peripheral nerve myelin, J. Cell Biol. 58: 42–53.PubMedGoogle Scholar
  183. Reiss, D. S., Lees, M. B., and Sapirstein, V. S., 1981, Is Na+K+-ATPase a myelin-associated enzyme?, J. Neurochem. 36: 1418–1426.PubMedGoogle Scholar
  184. Robinson, A. M., and Williamson, D. H., 1980, Physiological roles of ketone bodies as substrates and signals in mammalian tissues, Physiol. Rev. 60: 143–187.PubMedGoogle Scholar
  185. Rumsby, M. G., 1978, Organization and structure in central-nerve myelin, Biochem. Soc. Trans. 6: 448–462.PubMedGoogle Scholar
  186. Rumsby, M. G., 1980, Myelin structure and assembly—introductory thoughts, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 383–388, Elsevier/North-Holland, Amsterdam.Google Scholar
  187. Sapirstein, V. S., Lees, M. B., and Tractenberg, M. C., 1978, Soluble and membrane bound carbonic anhydrase from rat CNS: Regional development, J. Neurochem. 31: 283–288.PubMedGoogle Scholar
  188. Schwartz, M., Ernst, S. A., Siegel, G. J., and Agranoff, B. W., 1981, Immunocytochemical local- ization of (Na+,K+)-ATPase in the goldfish optic nerve, J. Neurochem. 36: 107–115.PubMedGoogle Scholar
  189. Serougne, C., Lefevre, C., and Chevallier, F., 1976, Cholesterol transfer between brain and plasma in the rat: A model for the turnover of cerebral cholesterol, Exp. Neurol. 51: 229–240.PubMedGoogle Scholar
  190. Shah, S. N., 1971, Glycosyl tranferases of microsomal fractions from brain: Synthesis of glucosyl ceramide and galactosyl ceramide during development and the distribution of glucose and galactose transferase in white and grey matter, J. Neurochem. 18: 395–402.PubMedGoogle Scholar
  191. Shah, S. N., 1981, Modulation in vitro of 3-hydroxy-3-methylglutaryl coenzyme A reductase in brain microsomes: Evidence for the phosphorylation and dephosphorylation associated with inactivation and activation of the enzyme, Arch. Biochem. Biophys. 211: 439–446.PubMedGoogle Scholar
  192. Shoyama, Y., and Kishimoto, Y., 1978, In vivo metabolism of 3-ketoceramide in rat brain, J. Neurochem. 30: 377–382.Google Scholar
  193. Singh, I., 1983, Ceramide synthesis from free fatty acids in rat brain: Function of NADPH, and substrate specificity, J. Neurochem. 40: 1565–1570.PubMedGoogle Scholar
  194. Singh, I., and Kishimoto, Y., 1980, Ceramide synthesis in rat brain: Characterization of the synthesis requiring pyridine nucleotide, Arch. Biochem. Biophys. 202: 93–100.PubMedGoogle Scholar
  195. Singh, I., and Kishimoto, Y., 1982, Brain-specific ceramide synthesis activity: Change during brain maturation and in jimpy mouse brain, Brain Res. 232: 500–505.PubMedGoogle Scholar
  196. Smith, M. E., 1967, The metabolism of myelin lipids, in: Advances in Lipid Research, Vol. 6 ( R. Paoletti and D. Kritchevsky, eds.), pp. 241–278, Academic Press, New York.Google Scholar
  197. Smith, M. E., 1968, The turnover of myelin in the adult rat, Biochim. Biophys. Acta 164: 285–293.PubMedGoogle Scholar
  198. Smith, M. E., and Benjamins, J. A., 1977, Model systems for the study of perturbations of myelin metabolism, in: Myelin ( P. Morell, ed.), pp. 447–488, Plenum Press, New York.Google Scholar
  199. Smith, M. E., and Eng. L. F., 1965, The turnover of the lipid components of myelin, J. Am. Oil. Chem. Soc. 42: 1013–1018.PubMedGoogle Scholar
  200. Smith, M. E., and Hasinoff, C. M., 1971, Biosynthesis of myelin proteins in vitro, J. Neurochem. 18: 739–747.PubMedGoogle Scholar
  201. Smith, M. E., Hasinoff, C. M., and Fumigalli, R., 1970, Inhibitors of cholesterol synthesis and myelin formation, Lipids 5: 665–671.PubMedGoogle Scholar
  202. Snyder, F., 1972, The enzymic pathways of ether linked lipids and their precursors, in: Ether Lipids: Chemistry and Biology ( F. Snyder, ed.), pp. 121–156, Academic Press, New York, and London.Google Scholar
  203. Sribney, M., 1966, Enzymatic synthesis of ceramide, Biochim. Biophys. Acta 125: 542–547.PubMedGoogle Scholar
  204. Sribney, M., and Kennedy, E. P., 1958, The enzymatic synthesis of sphingomyelin, J. Biol. Chem. 233: 1315–1322.PubMedGoogle Scholar
  205. Stoffel, W., 1971, Sphingolipids, Annv. Rev. Biochem. 40: 57–82.Google Scholar
  206. Stoffyn, A., Stoffyn, P., Farooq, M., Snyder, D. S., and Norton, W. T., 1981, Sialosyltransferase activity and specificity in the biosynthesis in vitro of sialosylgalactosylceramide (GM4) and sialosylgalactosylceramide (GM3) by rat astrocytes, neuronal perikarya, and oligodendroglia, Neurochem. Res. 6: 1149–1157.PubMedGoogle Scholar
  207. Subba Rao, G. Norcia, L. N., Pieringer, J., and Pieringer, R. A., 1977, The biosynthesis of sulphogalactosyldiacylglycerol of rat brain in vitro, Biochem. J. 166: 429–435.Google Scholar
  208. Sun, G. Y., 1973, The turnover of phosphoglycerides in the subcellular fractions of mouse brain: A study using [1–14C] oleic acid as precursor, J. Neurochem. 21: 1083–1092.PubMedGoogle Scholar
  209. Sun, G. Y., and Horrocks, L. A., 1973, Metabolism of palmitic acid in the subcellular fractions of rat brain, J. Lipid Res. 14: 206–214.PubMedGoogle Scholar
  210. Suzuki, K., Poduslo, J. F., and Poduslo, S. E., 1968, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152: 576–586.PubMedGoogle Scholar
  211. Toews, A. D., Horrocks, L. A., and King, J. S., 1976, Simultaneous isolation of purified microsomal and myelin fractions from rat spinal cord, J. Neurochem. 27: 25–31.PubMedGoogle Scholar
  212. Ullman, M. D., and Radin, N. S., 1972, Enzymatic formation of hydroxy ceramides and comparison with enzymes forming non-hydroxy ceramides, Arch. Biochem. Biophys. 152: 767–777.PubMedGoogle Scholar
  213. Ullman, M. D. and Radin, N. S., 1974, The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver, J. Biol. Chem. 249: 1506–1512.PubMedGoogle Scholar
  214. Walters, S. N., and Morell, P., 1981, The effects of altered thyroid states on myelinogenesis, J. Neurochem. 36: 1792–1801.PubMedGoogle Scholar
  215. Webber, R. J., and Edmond, J., 1979, The in vivo utilization of acetoacetate, ß(—)-3-hydroxybutyrate, and glucose for lipid synthesis in brain in the 18-day-old rat, J. Biol. Chem. 254: 3912–3920.PubMedGoogle Scholar
  216. Wenger, D. A., Pititpas, J. W., and Pieringer, R. A., 1968, The metabolism of glygeride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain, Biochemistry 7: 3700–3707.PubMedGoogle Scholar
  217. Wenger, D. A., Subba Rao, K., and Pieringer, R. A., 1970, The metabolism of glyceride glycolipids. III. Biosynthesis of digalactosyl diglyceride by galactosyl transferase pathways in brain, J. Biol. Chem. 245: 2513–2519.PubMedGoogle Scholar
  218. Wiegandt, H., 1982, The gangliosides, in: Advances in Neurochemistry, Vol. 4 ( B. W. Agranoff and M. H. Aprison, eds.), pp. 149–223, Plenum Press, New York.Google Scholar
  219. Wiggins, R. C., 1982, Myelin development and nutritional insufficiency, Brain Res. 257: 151–176.PubMedGoogle Scholar
  220. Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigman, M. R., and Morell, P., 1976, Myelin synthesis during postnatal nutritional deprivation and subsequent rehabilitation, Brain Res. 107: 257–273.PubMedGoogle Scholar
  221. Woelk, H., and Porcellati, G., 1978, Myelin catabolism, Proc. Eur. Soc. Neurochem. 1: 64–77.Google Scholar
  222. Wood, J. G., Jean, D. H. Whitaker, J. N., McLaughlin, B. J., and Albers, R. W., 1977, Immunocytochemical localization of sodium, potassium ATPase in knifefish brain, J. Neurocytol. 6: 571–581.PubMedGoogle Scholar
  223. Wu, P.-S., and Ledeen, R. W., 1980, Evidence for the presence of ethanolaminephosphotransferase in rat central nervous system myelin, J. Neurochem. 35: 659–666.PubMedGoogle Scholar
  224. Wüthrich, C., and Steck, A. J., 1981, A permeability change of myelin membrane vesicles towards cations is induced by MgATP but not by phosphorylation of myelin basic protein, Biochim. Biophys. Acta 640: 195–206.PubMedGoogle Scholar
  225. Wykle, R. L., 1977, Brain, in: Lipid Metabolism in Mammals, Vol. 1 ( F. Snyder, ed.), pp. 317–366, Plenum Press, New York.Google Scholar
  226. Wykle, R. L., and Snyder, F., 1969, The glycerol source for the biosynthesis of alkyl glycerol ethers, Biochem. Biophys. Res. Commun. 37: 658–662.PubMedGoogle Scholar
  227. Wykle, R. L., Blank, M. L., Malone, B., and Snyder, F., 1972, Evidence for a mixed-function oxidase in the biosynthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3–phosphorylethanolamine, J. Biol. Chem. 247: 5442–5447.PubMedGoogle Scholar
  228. Yahara, S., Singh, I., and Kishimoto, Y., 1980, Cerebroside and cerebroside III-sulfate in brain cytosol: Evidence for their involvement in myelin assembly, Biochim. Biophys. Acta 619: 177–185.PubMedGoogle Scholar
  229. Yahara, S., Singh, I., and Kishimoto, Y., 1981, Levels and syntheses of cerebrosides and sulfa-tides in subcellular fractions of jimpy mutants, Neurochem. Res. 6: 885–892.PubMedGoogle Scholar
  230. Yandrasitz, J. R., Ernst, S. A., And Salganicoff, L., 1976, The subcellular distribution of car- bonic anhydrase in homogenates of perfused rat brian, J. Neurochem. 27: 707–716.PubMedGoogle Scholar
  231. Yavin, E., and Gatt, S., 1969, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase, Biochemistry 8: 1692–1698.PubMedGoogle Scholar
  232. Yavin, E., and Zeigler, B. P., 1977, Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture, J. Biol. Chem. 252: 260–267.PubMedGoogle Scholar
  233. Yu, R. K., and Lee, S. H., 1976, In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes, J. Biol. Chem. 251: 198–203.PubMedGoogle Scholar
  234. Zimmerman, A. W., Quarles, R. H., Webster, H. de F., Matthieu, J., and Brady, R. O., 1975, Characterization and protein analysis of myelin subfractions in rat brain: Developmental and regional comparisons, J. Neurochem. 25: 749–757.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Pierre Morell
    • 1
  • Arrel D. Toews
    • 1
  1. 1.Department of Biochemistry and Nutrition and Biological Sciences Research CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations