Skip to main content

Minimizing the Absolute Upper Shadow

  • Chapter
Numbers, Information and Complexity

Abstract

The absolute upper shadow of a family A of r-sets on {1, ..., n} is \(bar \partial \) A = {A ∪ {i} : AA, iA, i ∈ ∪ A}. Given |A|, how small can \(bar \partial \) A be? Our aim in this note is to give an exact solution to this question. Curiously, the extremal sets turn out not to form a nested nestedfamily.

Our main tool is an inequality concerning the colex ordering that may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bollobâs, Combinatorics,Cambridge University Press, 1986, xii + 177 pp.

    Google Scholar 

  2. B. Bollobâs and I. Leader, “Compressions and isoperimetric inequalities”, J. Combinatorial Theory (A) 56 (1991), 47–62.

    Article  MATH  Google Scholar 

  3. D. Daykin, personal communication.

    Google Scholar 

  4. P. Frankl, “The shifting technique in extremal set theory”, Surveys in Combinatorics 1987 (Whitehead, C., ed. ), Cambridge University Press, 1987, 81–110.

    Google Scholar 

  5. G.O.H. Katona, “A theorem on finite sets”, Theory of Graphs (Erdös, P. and Katona, G.O.H., eds.), Akadémiai Kiadó, Budapest, 1968, 187–207.

    Google Scholar 

  6. D.J. Kleitman, “Extremal hypergraph problems”, Surveys in Combinatorics (Bollobâs, B., ed. ), Cambridge University Press, 1979, 44–65.

    Google Scholar 

  7. J.B. Kruskal, “The number of simplices in a complex”, Mathematical Optimization Techniques, Univ. California Press, Berkeley, 1963, 251–278.

    Google Scholar 

  8. M. Mörs, “A generalization of a theorem of Kruskal”, Graphs Combin. 1 1985, 167–183.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Ryten, personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bollobás, B., Leader, I. (2000). Minimizing the Absolute Upper Shadow. In: Althöfer, I., et al. Numbers, Information and Complexity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6048-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6048-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4967-7

  • Online ISBN: 978-1-4757-6048-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics