Old and New Results for the Weighted t-Intersection Problem via AK-Methods

  • Christian Bey
  • Konrad Engel


Let [n]: = {1, ..., n}, 2[n] be the power set of [n] and s ∈ [n]. A family F ⊆ 2[n] is called t-intersecting in [s] if
$$\left| {{X_1} \cap {X_2} \cap \left[ s \right]} \right| \geqslant t\,for\,all\,{X_1},{X_2}\, \in \,F.$$
Let ω: 2[n] → ℝ+ be a given weight function and
$${M_s}\left( {n,t;\omega } \right):\, = \max \left\{ {\omega \left( F \right)} \right.:F\,is\,t - \operatorname{int} er\sec ting\,in\left. {\,\left[ s \right]} \right\}.$$
For several weight functions, the numbers M n (n, t; ω) can be determined using three important methods of Ahlswede and Khachatrian: Generating Sets [2], Comparison Lemma [4], and Pushing—Pulling [3]. We survey these methods.
Also, sufficient conditions on ω for the equality
$${M_s}\left( {n,t;\omega } \right) = {M_n}\left( {n,t;\omega } \right)$$
are presented which simplify the method of Generating Sets. In addition, analogous conditions are given for the case that |∩ XF X| < t is required (nontrivial t-intersection).

Applications of these methods include new intersection theorems for chain- and star products.


Weight Function Star Product Intersection Theorem Iterate Application Optimal Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Ahlswede and L.H. Khachatrian. “The complete nontrivial-ir\tersection theorem for systems of finite sets”. J. Combin. Theory Ser. A, 76: 121–138, (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Ahlswede and L.H. Khachatrian. “The complete intersection theorem for systems of finite sets”. European J. Combin., 18: 125–136, (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    R. Ahlswede and L.H. Khachatrian. “A pushing-pulling method: New proofs of intersection theorems”. Combinatorics 19: 1–15, (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Ahlswede and L.H. Khachatrian. “The diametric theorem in Hamming space - optimal anticodes”. Adv. in Appl. Math., 20:429–449, (1998).Google Scholar
  5. [5]
    C. Bey. “Durchschnittsprobleme im Booleschen Verband”. Ph. D. Thesis. Universität Rostock, (1999).Google Scholar
  6. [6]
    C. Bey. “The Erdös-Ko-Rado bound for the function lattice”. Discrete Appl. Math., 95: 115–125, (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    C. Bey. “An intersection theorem for weighted sets”. Discrete Math., to appear.Google Scholar
  8. [8]
    C. Bey and K. Engel. “An asymptotic complete intersection theorem for chain products”. European J. Combin20: 321–327, (1999).Google Scholar
  9. [9]
    K. Engel. Spemer Theory. Cambridge University Press, Cambridge, (1997).CrossRefGoogle Scholar
  10. [10]
    K. Engel and P. Frankl. “An Erdos-Ko-Rado theorem for integer sequences of given rank”. European J. Combin7: 215–220, (1986).Google Scholar
  11. [11]
    P. Erdos, C. Ko, and R. Rado. “Intersection theorems for systems of finite sets”. Quart. J. Math. Oxford Ser., 12: 313–320, (1961).MathSciNetCrossRefGoogle Scholar
  12. [12]
    P.L. Erdos, P. Frankl, and G.O.H. Katona. “Extremal hyper graph problems and convex hulls”. Combinatorica, 5: 11–26, (1985).MathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Frankl. “The shifting technique in extremal set theory”. In C. Whitehead, editor, Surveys in Combinatorics, volume 123 of Lond. Math. Soc. Led. Note Ser., pages 81–110, Cambridge, (1987). Cambridge University Press.Google Scholar
  14. [14]
    P. Frankl and N. Tokushige. “The Erdos-Ko-Rado theorem for integer sequences”. Combinatorica, 19: 55–63, (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    G.O.H. Katona. “Intersection theorems for systems of finite sets”. Acta Math. Acad. Sci. Hung., 15: 329–337, (1964).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Christian Bey
    • 1
  • Konrad Engel
    • 1
  1. 1.FB MathematikUniversität RostockRostockGermany

Personalised recommendations