Communication Complexity of Functions on Direct Sums

  • Ulrich Tamm


The paper surveys direct sum methods in communication complexity, mostly concentrating on the results obtained by several authors in the research group of Rudolf Ahlswede in Bielefeld. Lower bound techniques are investigated which behave multiplicatively for functions defined on direct sums of sets. Applications, as the exact or asymptotic determination of the communication complexity and the comparison of bounding techniques are discussed.


Boolean Function Function Matrix Communication Complexity Independence Number Alphabet Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Ahlswede, “On code pairs with specified Hamming distances”, Cornbinatorics, Eger, 1987, Colloquia Math. Soc. J. Bolyai 52, 1988, 9–47.MathSciNetGoogle Scholar
  2. [2]
    R. Ahlswede and M. Mörs, “Inequalities for code pairs”, European J. Combinatorics 9, 1988, 175–188.zbMATHGoogle Scholar
  3. [3]
    R. Ahlswede and N. Cai, “On communication complexity of vector-valued functions”, IEEE Trans. Inform. Theory 40, no. 6, 1994, 2062–2067, also Preprint 91–041, SFB 343, Bielefeld, 1991.Google Scholar
  4. [4]
    R. Ahlswede and N. Cai, “2-way communication complexity of sum-type functions for one processor to be informed”, Probl. Inform. Transmission 30, no. 1, 1994, 1–10, also Preprint 91–053, SFB 343, Bielefeld 1991.Google Scholar
  5. [5]
    R. Ahlswede, N. Cai, and U. Tamm, “Communication complexity in Lattices”, Appl. Math. Letters 6, no. 6, 1993, 53–58.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    R. Ahlswede, N. Cai, and Z. Zhang, “A general 4-word-inequality with consequences for 2-way communication complexity”, Advances in Applied Mathematics 10, 1989, 75–94.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    R. Ahlswede and Z. Zhang, “Code pairs with specified parity of the Hamming distances”, Discr. Math. 188, 1998, 1–11.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    R. Ahlswede, A. El Gamal, and K. F. Pang, “A two-family extremal problem in Hamming space”, Discr. Math. 49, 1984, 1–5.zbMATHCrossRefGoogle Scholar
  9. [9]
    A. V. Aho, J. D. Ullman, and M. Yannakakis, “On notions of information transfer in VLSI circuits”, Proc. ACM STOC, 1983, 133–139.Google Scholar
  10. [10]
    L. Babai, P. Frankl, and J. Simon, “Complexity classes in communication complexity theory”, Proc. IEEE FOCS, 1986, 337–347.Google Scholar
  11. [11]
    N. Cai, “A bound of sizes of code pairs satisfying the strong 4-words property for Lee distance”, J. System Sci. Math. Sci. 6, 1986, 129–135.zbMATHGoogle Scholar
  12. [12]
    B. Chor and O. Goldreich, “Unbiased bits from sources of weak randomness and probabilistic communication complexity”, SIAM J. Comp. 17, no. 2, 1988, 230–261.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. Dietzfelbinger, J. Hromkovic, and G. Schnitger, “A comparison of two lower bound methods for communication complexity”, Theoret. Comput. Sci. 168, no. 1, 1996, 39–51.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. Diekmann, “Probabilistische Kommunikationskomplexität”, Diploma thesis, Bielefeld, 1997.Google Scholar
  15. [15]
    P. Delsarte and P. Piret, “An extension of an inequality by Ahlswede, El Gamal and Pang for pairs of binary codes”, Discr. Math. 55, 1985, 313–315.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    A. El Gamal and K. F. Pang, “Communication complexity of computing the Hamming distance”, SIAM J. Comp. 15, no 4, 1986, 932–947.zbMATHCrossRefGoogle Scholar
  17. [17]
    T. Feder, E. Kushilevitz, M. Naor, and N. Nisan, “Amortized communication complexity”, SIAM J. Comp. 24, no. 4, 1995, 736–750.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    M. Firer, “The power of randomness for communication complexity”, Proc. ACM STOC, 1987, 178–181.Google Scholar
  19. [19]
    W. Haemers, “Disconnected vertex sets and equidistant code pairs”, Electron. J. Combin. 4, no. 1, 1997, 10 pp.MathSciNetGoogle Scholar
  20. [20]
    B. Halstenberg and R. Reischuk, “Relations between communication complexity classes ”, J. Comput. System Sci. 41, 1990, 402–429.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    J. Hromkovic, Communication complexity and parallel computing, Springer, 1997.Google Scholar
  22. [22]
    J. H. van Lint and J. I. Hall, “Constant distance code pairs”, Proc. Kon. Ned. Akad. v. Wet. (A) 88, 1985, 41–45.Google Scholar
  23. [23]
    B. Kalyanasundaram and G. Schnitger, “Probabilistic communication complexity of set intersection”, SIAM J. Discr. Math. 5, 1992, 545–557.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    M. Karchmer, E. Kushilevitz, and N. Nisan, “Fractional covers and communication complexity”, SIAM J. Disc. Math. 8, no. 1, 1995, 76–92.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    M. Karchmer, R. Raz, and A. Wigderson, “Super-logarithmic depth lower bounds via direct sum methods in communication complexity”, Proc. 6th IEEE Structure in Complexity Theory, 1991, 299–304Google Scholar
  26. [26]
    I. Krasikov and S. Litsy, “On integral zeros of Krawtchouk polynomials”, J. Combin. Theory Ser. A 74, 1996, 71–99.zbMATHCrossRefGoogle Scholar
  27. [27]
    M. Krause, “Geometric arguments yield better bounds for threshold circuits and distributed computing”, PhD thesis, Berlin, 1990, also: Theoret. Comput. Sci. 156, no. 1–2, 1996, 99–117.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    E. Kushilevitz and N. Nisan, Communication complexity, Cambridge University Press, 1997.Google Scholar
  29. [29]
    L. Lovasz and M. Saks, “Communication complexity and combinatorial lattice theory”, J. Comput. System Sci. 47, 1993, 330–337.MathSciNetCrossRefGoogle Scholar
  30. [30]
    K. Mehlhorn and E. M. Schmidt, “Las Vegas is better than determinism in VLSI and distributed computing”, Proc. ACM STOC, 1982, 330–337.Google Scholar
  31. [31]
    M. Naor, A. Orlitsky, and P. Shor, “Three results on interactive communication”, IEEE Trans. Inform. Theory 39, no. 5, 1993, 1608–1615.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    N. Nisan and A. Wigderson, “On rank vs. communication complexity”, Combinatorica 15, no. 4, 1995, 557–566.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    W. Paul, “Realizing Boolean functions on disjoint sets of variables”, Theoret. Comput. Sci. 2, 1976, 383–396.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    R. Raz and B. Spieker, “On the log rank conjecture in communication complexity”, Combinatorica 15, no. 4, 1995, 567–588.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A. Razborov, “On the distributional complexity of disjointness”, Theoret. Comput. Sci., 106, 1992, 385–390MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    U. Tamm, “Communication complexity of sum-type functions”, PhD thesis, Bielefeld, 1991.Google Scholar
  37. [37]
    U. Tamm, “Still another rank determination of set intersection matrices with an application in communication complexity”, Appl. Math. Letters 7, 1994, 39–44.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    U. Tamm, “Communication complexity of sum–type functions invariant under translation”, Inform. and Computation 116, no. 2, 1995, 162–173.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    U. Tamm, “Deterministic communication complexity of set intersection”, Discr. Appl. Math., 61, 1995, 271–283.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    J. H. van Lint, “Distance theorems for code pairs”, Combinatorial Mathematics: Proceedings of the Third International Conference, New York, 1985, Ann. New York Acad. Sci. 555, 1989, 421–424.CrossRefGoogle Scholar
  41. [41]
    I. Wegener, “Communication complexity and BDD lower bound techniques”, this volume, 1999.Google Scholar
  42. [42]
    A. C. Yao, “Some complexity questions related to distributive computing”, Proc. ACM STOC, 1979, 209–213.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ulrich Tamm
    • 1
  1. 1.Fakultät MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations