On Subshifts and Topological Markov Chains

  • Wolfgang Krieger


Let Σ be a finite alphabet with its discrete topology. On the shift space Σ one has the shift S Σ,


Equivalence Class Irreducible Component Periodic Point Finite Type Initial Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.—P. Béal and D. Perrin, “Symbolic Dynamics and Finite Automata”, Handbook of Formal Languages, G. Rozenberg and A. Salomaa, Eds., Springer 1997, Vol. 2, 463–506.Google Scholar
  2. [2]
    F. Blanchard and G. Hansel, “Systèmes codés”, Theoretical Computer Science 44, 1986, 17–49.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Boyle, B. Kitchens, and B. Marcus, “A note on minimal covers for sofic systems”, Proc. Amer. Math. Soc. 95, 1985, 403–411.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. Boyle and W. Krieger, “Automorphisms and subsystems of the shift”, J. fair die reine und angewandte Mathematik 437, 1993, 13–28.MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Boyle, B. Marcus, and P. Trow, Resolving maps and the Dimension Group for Shifts of Finite Type, Mem. Amer. Math. Soc. 377, 1987.Google Scholar
  6. [6]
    I. Csiszâr and J. Komlós, “On the equivalence of two models of finite—state noiseless channels from the point at view of the output”, Proceedings of the Colloquium on Information Theory, A. Renyi and J. Bolyai, eds, Math. Soc. Budapest, 1968, 129–131.Google Scholar
  7. [7]
    D. Fiebig and U.—R. Fiebig, “Covers for Coded Systems”, Symbolic Dynamics and Its Applications, Contemporary Mathematics 135, ed. P. Walters, Amer. Math. Soc. 1992, 139–179.Google Scholar
  8. [8]
    R. Fischer, “Sofic Systems and Graphs”, Monatsh. Math. 80, 1975, 179186.Google Scholar
  9. [9]
    R. Fischer, “Graphs and symbolic dynamics”, Colloq. Math. Soc. Janos Bólyai 16, Topics in Information Theory, 1975, 229–244.Google Scholar
  10. [10]
    B. Kitchens, Symbolic Dynamics, Springer 1998.Google Scholar
  11. [11]
    W. Krieger, “On sofic systems I”, Israel J. Math 48, 1984, 305–330.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    W. Krieger, “On sofic systems II”, Israel J. Math 60, 1987, 167–176.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    W. Krieger, talk given at C.I.R.M., Luminy, July 27, 1987.Google Scholar
  14. [14]
    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press 1995.Google Scholar
  15. [15]
    B. Marcus, “Sofic systems and encoding data”, IEEE -IT 31, 1985, 366377.Google Scholar
  16. [16]
    C. Shannon, “A mathematical theory of communication”, Bell System Techn. J. 27, 1948, 378–432, 623–656.MathSciNetGoogle Scholar
  17. [17]
    B. Weiss, “Subshifts of finite type and sofic systems”, Monatsh. Math. 77, 1973, 462–474.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Wolfgang Krieger
    • 1
  1. 1.Mathematisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations