The AVC with Noiseless Feedback and Maximal Error Probability: A Capacity Formula with a Trichotomy

  • Rudolf Ahlswede
  • Ning Cai
Chapter

Abstract

To use common randomness in coding is a key idea from the theory of identification. Methods and ideas of this theory are shown here to have also an impact on Shannon’s theory of transmission. As indicated in the title, we determine the capacity for a classical channel with a novel structure of the capacity formula. This channel models a robust search problem in the presence of noise (see R. Ahlswede and I. Wegner, Search Problems, Wiley 1987).

Keywords

Convex Hull Error Probability Encode Function Elimination Technique Error Control Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Ahlswede, “Channels with arbitrarily varying channel probability functions in the presence of noiseless feedback”, Z. Wahrsch. Verw. Gebiete, vol. 25, 1973, 239–252.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    R. Ahlswede, “Elimination of correlation in random codes for arbitrarily varying channels”, Z. Wahrsch. Verw. Gebiete, vol. 44, 1978, 159–175.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    R. Ahlswede, “Coloring hypergraphs: a new approach to multi-user source coding”, J. Combin. Inform. System Sci., Part I, vol. 4, 1979, 76–115 and Part II, vol. 5, 1980, 220–268.MathSciNetMATHGoogle Scholar
  4. [4]
    R. Ahlswede and V.B. Balakirsky, “Identification under random processes”, Preprint 95–098, SFB 343 “Diskrete Strukturen in der Mathematik”, Universität Bielefeld, 1995, Problemy peredachii informatsii, (special issue devoted to M.S. Pinsker), vol.132, no. 1, Jan-March 1996, 144–160.Google Scholar
  5. [5]
    R. Ahlswede and N. Cai, “Two proofs of Pinskers conjecture concerning arbitrarily varying channels”, IEEE Trans. Inform. Theory, vol. IT-37, 1991, 1647–1649.MathSciNetGoogle Scholar
  6. [6]
    R. Ahlswede and N. Cai, “Correlated sources help the transmission over AVC”, Preprint 95–106, SFB 343 “Diskrete Strukturen in der Mathematik”, Universität Bielefeld, 1995, IEEE Trans. Inf. Theory, Vol. IT-43, No. 1, 1997, 37–67.Google Scholar
  7. [7]
    R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography, Part 1: Secret sharing”, IEEE Trans. Inform. Theory, vol. IT-39, 1993, 1121–1132 and “Part 2: CR capacity”, Preprint 95–101, SFB 343 “Diskrete Strukturen in der Mathematik”, Universität Bielefeld, 1995, IEEE Trans. Inf. Theory, Vol. 44, No. 1, 1998, 55–62.Google Scholar
  8. [8]
    R. Ahlswede and G. Dueck, “Identification via channels”, IEEE Trans. Inform. Theory, vol. IT-35, 1989, 15–29.MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Ahlswede and G. Dueck, “Identification in the presence of feedback —a discovery of new capacity formulas”, IEEE Trans. Inform. Theory, vol. IT-35, 1989, 30–39.MathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Ahlswede and Z. Zhang, “New directions in the theory of identification via channels”, IEEE Trans. Inform. Theory, vol. IT-41, 1995, 1040–1050.Google Scholar
  11. [11]
    J. Kiefer and J. Wolfowitz, “Channels with arbitrarily varying channel probability functions”, Inform. and Control, vol. 5, 1962, 44–54.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    C.E. Shannon, “The zero-error capacity of a noisy channel”, IRE Trans. Inform. Theory, vol. IT-2, 1956, 8–19.MathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Lin and D.J. Costello, Jr., Error control coding: Fundamentals and Applications, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1983.Google Scholar
  14. [14]
    J.M. Ooi, “A Framework for Low-Complexity Communication Channels with Feedback”, Dissertation at MIT, RLE Technical Report, No. 617, Nov. 1997.Google Scholar
  15. [15]
    J.M. Ooi and Gregory W. Wornell, “Fast iterative coding for feedback channels”, 1997 Proceedings IEEE Int. Symp. on In Theory, Ulm, Germany, June 29 - July 4, 1997, 133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Rudolf Ahlswede
    • 1
  • Ning Cai
    • 1
  1. 1.Fakultät MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations