Skip to main content

On Dirichlet Series for Sums of Squares

  • Chapter
Number Theory and Modular Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 10))

  • 503 Accesses

Abstract

Hardy and Wright (An Introduction to the Theory of Numbers, 5th edn., Oxford, 1979) recorded elegant closed forms for the generating functions of the divisor functions σ k (n) and σ 2 k (n) in the terms of Riemann Zeta function ζ(s) only. In this paper, we explore other arithmetical functions enjoying this remarkable property. In Theorem 2.1 below, we are able to generalize the above result and prove that if f i and g i are completely multiplicative, then we have

$$ \sum\limits_{n = 1}^\infty {\frac{{({f_{1*{g_1}}})\cdot({f_{2*{g_2}}})(n)}}{{{n^s}}}} = \frac{{{L_{{f_1}{f_2}}}(s){L_{{g_1}{g_2}}}(s){L_{{f_1}{g_2}}}(s){L_{{g_1}{f_2}}}(s)}}{{{L_{{f_1}{f_2}{g_1}{g_2}}}(2s)}} $$

where \( {L_f}(s): = \sum\nolimits_{n = 1}^\infty {f(n){n^{ - s}}} \) is the Dirichlet series corresponding to f. Let r N (n) be the number of solutions of x 21 + … + x 2 N = n and r 2, p (n) be the number of solutions of x 2 + Py 2 = n. One of the applications of Theorem 2.1 is to obtain closed forms, in terms of ζ (s) and Dirichlet L-functions, for the generating functions of r N (n), r 2 N (n), r 2, p (n) and r 2, p (n)2 for certain N and P. We also use these generating functions to obtain asymptotic estimates of the average values for each function for which we obtain a Dirichlet series.

Research supported by NSERC and by the Canada Research Chair Programme.

In memory of Robert A. Rankin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.E. Andrews, “The fifth and seventh order mock theta functions,” Transactions of the AMS 293 (1986), 113–134.

    Article  MATH  Google Scholar 

  2. P. Bateman, “On the representation of a number as the sum of three squares,” Transactions of the AMS 71 (1951), ‘70–101.

    Google Scholar 

  3. J.M. Borwein and P.B. Borwein, Pi and the AGM. A study in analytic number theory and computational complexity, CMS, Monographs and Advanced Texts, 4. John Wiley and Sons, New York, 1987. Paperback, 1998.

    Google Scholar 

  4. L. Carlitz, “A note on the multiplication formulas for the Bernoulli and Euler polynomials,” Proceedings of the AMS 4 (1953), 184–188.

    Article  MATH  Google Scholar 

  5. R.D. Connors and J.P. Keating, “Degeneracy moments for the square billiard,” J. Phys. G: Nucl. Part. Phys. 25 (1999), 555–562.

    MathSciNet  Google Scholar 

  6. R.E. Crandall, “New representations for the Madelung constant,” Experimental Mathematics 8 (4) (1999), 367–379.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.E. Crandall, “Signal processing applications in additive number theory,” (2001) preprint.

    Google Scholar 

  8. R. Crandall and S. Wagon, “Sums of squares: Computational aspects,” (2001) preprint.

    Google Scholar 

  9. J.A. Ewell, “New representations of Ramanujan’s tau function,” Proc. Amer. Math. Soc. 128 (1999), 723–726.

    Article  MathSciNet  Google Scholar 

  10. M. Glasser and I. Zucker, “Lattice Sums,” Theoretical Chemistry: Advances and Perspectives, 5 (1980), 67–139.

    Google Scholar 

  11. E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, 1985.

    Google Scholar 

  12. G.H. Hardy, Collected Papers,Oxford University Press, 1969, Vol. I.

    Google Scholar 

  13. G.H. Hardy, Ramanujan, Cambridge University Press, 1940. Revised Amer. Math. Soc., 1999.

    Google Scholar 

  14. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford, 1979.

    Google Scholar 

  15. L.K. Hua, Introduction to Number Theory, Springer-Verlag, 1982.

    Google Scholar 

  16. H. Jwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, Vol. 17, AMS, 1997.

    Google Scholar 

  17. A.A. Karatsuba, Basic Analytic Number Theory, Springer-Verlag, 1991.

    Google Scholar 

  18. M. Kühleitner, “On a question of A. Schinzel concerning the sum E„X(r(n))2,” Österreichisch-UngarischSlowakisches Koloquium Über Zahlentheorie (Maria Trost, 1992 ), 63–67, Grazer Math. Ber., 318 KarlFranzens-Univ. Graz, Graz, 1993.

    Google Scholar 

  19. E. Landau, Vorlesungen über Zahlentheorie, Leipzig, Hirzel, 1927.

    MATH  Google Scholar 

  20. E. Landau, Collected works,Vol. 4. (German) (Edited and with a preface in English by P.T. Bateman, L. Mirsky, H.L. Montgomery, W. Schaal, I.J. Schoenberg, W. Schwarz and H. Wefelscheid. Thales-Verlag, Essen, 1986.)

    Google Scholar 

  21. M.R. Marty, Problems in Analytic Number Theory.

    Google Scholar 

  22. W. Nowak, “Zum Kreisproblem,” österreich. Akad. Wiss. Math.-Natur. K1. Sitzungsber. II 194 (4–10) (1985), 265–271.

    MATH  Google Scholar 

  23. H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag, 1973.

    Google Scholar 

  24. S. Ramanujan, “Some formulae in the analytic theory of numbers:’ Messenger of Math. 45 (1916), 81–84.

    Google Scholar 

  25. R. Rankin, “Contributions to the theory of Ramanujan’s function r(n) and similar arithmetical functions (I), (II), (III),” Proc. Cambridge Philos. Soc. 35, 36 (1939) (1940), 351–356,357–372,150–151.

    Google Scholar 

  26. M.M. Robertson and I.J. Zucker, “Exact values for some two-dimensional lattice sums,” Z Phys. A: Math. Gen. 8 (1975), 874–881.

    Article  MathSciNet  MATH  Google Scholar 

  27. H.E. Rose, A Course in Number Theory, Oxford Science Publications, 2nd edn., 1994.

    Google Scholar 

  28. D. Shanks, “Calculation and applications of Epstein zeta functions”, Math. Comp. 29 (1975), 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  29. E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Science Publications, 2nd edn., 1986.

    Google Scholar 

  30. G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borwein, J.M., Choi, KK.S. (2003). On Dirichlet Series for Sums of Squares. In: Berndt, B., Ono, K. (eds) Number Theory and Modular Forms. Developments in Mathematics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6044-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6044-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5395-7

  • Online ISBN: 978-1-4757-6044-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics