Skip to main content

On the Parity of the Number of Partitions in Square Free Parts

  • Chapter
Number Theory and Modular Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 10))

  • 488 Accesses

Abstract

Let \( \tilde p(n) \) be the number of partitions of a positive integer n in square free parts. We prove that for large N,

  1. (a)

    The number of nN such that \( \tilde p(n) \) is odd is ≫ log N

  2. (b)

    The number of nN such that \( \tilde p(n) \) is even is ≫ N/log N.

In memory of Professor Robert A. Rankin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ahlgren, “Distribution of parity of the partition function in arithmetic progressions,” Indag. Math. (N.S.) 10 (2) (1999), 173–181.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Erdös, “On an elementary proof of some asymptotic formulas in the theory of partitions,” Ann. of Math. 43 (2) (1942), 437–450.

    Article  MathSciNet  MATH  Google Scholar 

  3. G.H. Hardy and S. Ramanujan, “Asymptotic formulae for the distribution of integers of various types,” Proc. London Math. Soc. 16 (1917), 112–132.

    Google Scholar 

  4. G.H. Hardy and S. Ramanujan, “Asymptotic formulae in combinatory analysis,” Proc. London Math. Soc. 17 (1918), 75–115.

    Article  Google Scholar 

  5. L. Mirsky, “The distribution of values of the partition function in residue classes,” J. Math. Anal. Appl. 93 (1983), 593–598.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-L. Nicolas, I.Z. Ruzsa, and A. Sârközy, “On the parity of additive representation functions. With an appendix by J-P. Serre,” J. Number Theory 73 (2) (1998), 292–317.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-L. Nicolas and A. Sârközy, “On the parity of partition functions,” Illinois J. Math. 39 (4) (1995), 586–597.

    MathSciNet  MATH  Google Scholar 

  8. K. Ono, “Parity of the partition function in arithmetic progressions,” J. Reine. Angew. Math. 472 (1996), 1–15.

    MathSciNet  MATH  Google Scholar 

  9. K. Ono, “The partition function in arithmetic progressions,” Math. Ann. 312 (1998), 251–260.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zaharescu, A. (2003). On the Parity of the Number of Partitions in Square Free Parts. In: Berndt, B., Ono, K. (eds) Number Theory and Modular Forms. Developments in Mathematics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6044-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6044-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5395-7

  • Online ISBN: 978-1-4757-6044-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics