Skip to main content

More Primes and Polynomials

  • Chapter
Number Theory and Modular Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 10))

  • 490 Accesses

Abstract

Triplets of polynomials in four variables with rational coefficients and every term of arbitrarily high degree are exhibited. At least one polynomial in each triplet vanishes on infinitely many integer points whose coordinates are all prime.

Partially supported by NSF Contract DMS 0070496.

In memory of Robert A. Rankin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Berrizbeitia and P.D.T.A. Elliott. “On products of shifted primes.” The Ramanujan Journal 2 (1998), 201–217.

    Article  MathSciNet  Google Scholar 

  2. E. Bombieri, “On the large sieve,” Mathematika 12 (1965), 201–225.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bombieri, J. Friedlander, and H. Iwaniec, “Primes in arithmetic progressions to large moduli;” Acta Math. 156 (1986), 203–251.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Chen, “On the representation of a large even integer as the sum of a prime and the product of at most two primes,” Kexue Torgbao 17 (1966), 385–386 (Chinese).

    Google Scholar 

  5. J. Chen. “On the representation of a large even integer as the sum of a prime and the product of at most two primes;’ Sci. Sinica 16 (1973). 157–176.

    MathSciNet  MATH  Google Scholar 

  6. P.D.T.A. Elliott, “On a conjecture of Kâtai,” Acta Arithmetica XXVI (1974), 11–20.

    Google Scholar 

  7. P.D.T.A. Elliott, “The multiplicative group of rationals generated by the shifted primes, 1,’ J. reine und ang. Math. 463 (1995), 169–216.

    MATH  Google Scholar 

  8. P.D.T.A. Elliott, “Products of shifted primes. Multiplicative analogues of Goldbach’s problems, II,” The Ramanujan Journal 2 (1998). 201–217.

    Article  MATH  Google Scholar 

  9. P.D.T.A. Elliott, “The multiplicative group of rationals generated by the shifted primes, 11.” J. reine und ang. Math. 519 (2000), 59–71.

    MATH  Google Scholar 

  10. P.D.T.A. Elliott, “Primes, products and polynomials.” I nventiones Mathematicae 149 (2002), 453–487.

    Article  MATH  Google Scholar 

  11. P.D.T.A. Elliott, “Probabilistic number theory and its ramifications,” RIMS Kokyuroku 1219, Analytic Number Theory-Expectations for the 21 th Century, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, July 2001, 33–50.

    Google Scholar 

  12. H. Halbertstam and H.-E. Richert. Sieve Methods, Academic Press, London, New York, San Francisco, 1974.

    Google Scholar 

  13. P. Kuhn. “Zur Viggo Brun’schen Siebmethode. 1, Norski Vd. Setsk. Forth. Trondhjetn 14 (39) (1941), 145–148.

    MATH  Google Scholar 

  14. Chengdong Pan and Chengbaio Pan. Goldbach Conjecture. Science Press. Beijing, China. 1992.

    MATH  Google Scholar 

  15. K. Prachar, Prim:ahlverteilung, Grund. der math. Wiss.. Springer-Verlag, Berlin, Göttingen. Heidelberg, 1957.

    Google Scholar 

  16. L.G. Schnirelmann. “On additive properties of numbers,” Rostov, ND, l:y. Donsk. Polvtech, in-ta 14 (1930), 3–28; (Russian).

    Google Scholar 

  17. L.G. Schnirelmann, “Über additive Eigenschaften von Zahlen,” Math. Ann 107 (1933), 649–690.

    Article  MathSciNet  Google Scholar 

  18. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.

    Google Scholar 

  19. E.C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford University Press, 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elliott, P.D.T.A. (2003). More Primes and Polynomials. In: Berndt, B., Ono, K. (eds) Number Theory and Modular Forms. Developments in Mathematics, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6044-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6044-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5395-7

  • Online ISBN: 978-1-4757-6044-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics