Fuzzy Γ-Operators and Convolutive Approximations

  • S. Dolecki
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)

Abstract

By Γ-functional we intend the functionals built from consecutive extremizations. The simpler Γ-functionals are lower and upper limits along families of subsets:

Keywords

Complete Lattice Approximation Theorem Coupling Function Generalize Convexity Semicontinuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Attouch, R. Wets. “A convergence theory for saddle functions”. Trans. Amer. Math. Soc., 280 (1983), pp. 1–41.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E.J. Balder. “An extension of duality-stability relations to nonconvex optimization problems”. SIAM J. Control Optim., 15 (1977), 329–343.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    L. Cesari. “Seminormality and upper semicontinuity in optimal control”. J. Opt. Th. Appl., 6 (1970), 114–137.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    G. Choquet. “Sur les notions de filtre et de grille”. C.R. Ac. Sci. Paris, 224 (1947), 171–173.MathSciNetMATHGoogle Scholar
  5. [5]
    E. De Giorgi. “Generalized limits in calculus of variations”. In “Topics in Functional Analysis”, Quaderno Scuola Normale Superiore, Pisa (1980–81).Google Scholar
  6. [6]
    E. De Giorgi and T. Franzoni.“ Su un tipo di convergenza variazionale”. Atti Accademia dei Lincei, Fis. Mat. Natur, (8) 58 (1975), 842–850.MATHGoogle Scholar
  7. [7]
    S. Dolecki. “On inf-convolutions, generalized convexity and seminormality”. Publ. Math. Limoges (1986).Google Scholar
  8. [8]
    S. Dolecki, G.H. Greco. “Cyrtologies of convergences I”. Math. Nachr., 126 (1986), pp. 327–348.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Dolecki, J. Guillerme, M.B. Lignola, C. Malivert. “F-inequalities and stability of generalized extremal convolutions”. To appear.Google Scholar
  10. [10]
    S. Dolecki and S. Kurcyusz. “On 4-convexity in extremal problems”. S1.1iJ J. Control Optim., 16 (1978), 277–300.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Fougères, A. Truffert. “Régularisation-s.c.i. et I’-convergence: approximations inf-convolutives associées à un référentiel”. Publ. AVAMAC, Univ. Perpignan, 84–08/15, Annali Mat. Pura Appl., to apper (1984).Google Scholar
  12. [12]
    G.S. Goodman. “The duality of convex functions and Cesari’s property Q. In ”Mathematical Control Theory“, S. Dolecki, C. Olech and J. Zabczyk (eds.), Banach Center Pubblications, I, Polish Scientific Publishers, Warszawa (1976).Google Scholar
  13. [13]
    G.H. Greco. “Limitoidi e reticoli completi”. Ann. Univ. Ferrara, Sez. VII, Sc. Mat.., 29 (1983), 153–164.MathSciNetMATHGoogle Scholar
  14. [14]
    G.H. Greco. “Teoria dos semifiltros”. 22° Sem. Bras. d’Analise, Rio de Janeiro (1985), 1–117.Google Scholar
  15. [15]
    J.L. Joly. “Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles la polarité est bicontinue”. J. Math. pures Appl.,52 (1973), 421–441:Google Scholar
  16. P.O. Lindberg. “A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric non convex duality”. In “Survey of Math. Progr. 1”, Proc. IX Intern. Math. Progr. Symp., Prékopa (ed.) North-Holland, Amsterdam (1979).Google Scholar
  17. [17]
    J.J. Moreau. “Inf-convolution des fonctions numériques sur un espace vectoriel”. C.R. Ac. Sci. Paris, 256 (1963), 5047–5049.MathSciNetMATHGoogle Scholar
  18. [18]
    J.J. Moreau. “Fonctionnelles convexes”. Sém. Equ. dérivées partielles, Collège de France, Paris, n.2 (1966–67).Google Scholar
  19. [19]
    M. Volle. “Conjugation par tranches”. Annali Mat. para Appl., 139 (1985), 279–311.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • S. Dolecki
    • 1
  1. 1.Dept. of MathematicsUniv. of LimogesLimogesFrance

Personalised recommendations