Advertisement

Exact Penalty Functions for Nondifferentiable Programming Problems

  • G. Di Pillo
  • F. Facchinei
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)

Abstract

In recent years an increasing attention has been devoted to the use of nondifferentiable exact penalty functions for the solution of nonlinear programming problems. However, as pointed out in [22], virtually all the published literature on exact penalty functions treats one of two cases: either the nonlinear programming problem is a convex problem (see, e.g., [2], [18], [23]), or it is a smooth problem (see, e.g., [1], [3–5], [10–13], [16], [18–20]). Exact penalty functions for nonlinear programming problems neither convex nor smooth, have been considered in [6], [21], [22], where locally lipschitz problems are dealt with.

Keywords

Penalty Function Lipschitz Function Generalize Gradient Nonlinear Programming Problem Exact Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.S. Bazaraa and J.J. Goode. “Sufficient conditions for a globally exact penalty function without convexity”. Math. Progr. Study, 19 (1982), pp. 1–15.MathSciNetCrossRefGoogle Scholar
  2. [2]
    D.P. Bertsekas. “Necessary and sufficient conditions for a penalty method to be exact”. Math. Programming, 9 (1975), pp. 87–99.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D.P. Bertsekas. “Constrained optimization and Lagrange multiplier methods”. Academic Press, New York (1982).Google Scholar
  4. [4]
    C. Charalambous. “A lower bound for the controlling parameters of the exact penalty function”. Math. Programming, 15 (1978), pp. 278–290.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Charalambous. “On conditions for optimality of a class of nondifferentiable functions”. J. Optim. Theory Appl., 43 (1984), pp. 135–142.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F.H. Clarke. “Generalized gradients of Lipschitz functionals”. Mathematics Research Center, Technical Summary Report, University of Wisconsin, Madison, WI. 43 (1976), pp. 135–142.Google Scholar
  7. [7]
    F.H. Clarke. “Optimization and nonsmooth analysis”. J. Wiley, New York (1983).Google Scholar
  8. [8]
    G. Di Pillo and L. Grippo. “An exact penalty method with global convergence properties for nonlinear programming problems”. Math. Programming, 36 (1986), pp. 1–18.MathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Di Pillo and L. Grippo. “Globally exact nondifferentiable penalty functions”. Report 10. 87, Dipartimento di Informatica e Sistemistica, University of Rome “La Sapienza”, Rome (1987).Google Scholar
  10. [10]
    G. Di Pillo and L. Grippo. “On the exactness of a class of nondifferentiable penalty functions”. Jou. Optimization. Th. Appl., 57 (1988), pp. 397–408.Google Scholar
  11. [11]
    J.P. Evans, F.J. Gould and J.W. Tolle. “Exact penalty functions in nonlinear programming”. Math. Programming, 4 (1973), pp. 72–97.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Fletcher. “Practical methods of optimization”. Vol. 2, J. Wiley, New York (1981).zbMATHGoogle Scholar
  13. [13]
    S.P. Han and O.L. Mangasarian. “Exact penalty functions in nonlinear programming”. Math. Programming, 17 (1979), pp. 251–269.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.B. Hiriart-Urruty. “Refinements of necessary optimality conditions in nondifferentiable programming II”. Math. Prog. Study, 19 (1982), pp. 120–139.MathSciNetCrossRefGoogle Scholar
  15. [15]
    R.A. Horn and C.A. Johnson. “Matrix analysis”. Cambridge University Press, Cambridge (1985).CrossRefzbMATHGoogle Scholar
  16. [16]
    S. Howe. “New conditions for the exactness of a simple penalty function”. SIAM J. Control, 11 (1973), pp. 378–381.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    O.L. Mangasarian. “Nonlinear Programming”. McGraw-Hill, Inc., Cambridge (1969).Google Scholar
  18. [18]
    O.L. Mangasarian. “Sufficiency of exact penalty minimization”. SIAM J. Control Optim., 23 (1985), pp. 30–37.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Pietrzykowski. “An exact potential method for constrained maxima”. SIAM J. Numer. Anal., 6 (1969), pp. 299–304.MathSciNetzbMATHGoogle Scholar
  20. [20]
    T. Pietrzykowski. “The potential method for conditional maxima in the locally compact metric spaces”. Numer. Math., 14 (1970), pp. 325–329.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Polak, D.Q. Mayne and Y. Wardi. “On the extension of constrained optimization algorithms from differentiable to nondifferentiable problems”. SIAM J. Control Optim., 21 (1983), pp. 190–203.MathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Rosenberg. “Exact penalty functions and stability in locally Lipschitz programming”. Math. Programming, 30 (1984), pp. 340–356.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    W.I. Zangwill. “Non-linear programming via penalty functions”. Management Sci.. 13 (1967), pp. 344–358.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • G. Di Pillo
    • 1
  • F. Facchinei
    • 1
  1. 1.Dept. of Systems and Computer ScienceUniv. “La Sapienza”RomeItaly

Personalised recommendations