New Functionals in Calculus of Variations

  • E. De Giorgi
  • L. Ambrosio
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)


Recent studies on energy functionals corresponding to mixtures of different fluids some of which may be liquid crystals lead to investigate functionals of the type (see [4, 5, 7, 8, 15, 22, 23, 24])


Liquid Crystal Lower Semicontinuity Bounded Variation Borel Function Minimal Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Acerbi, N. Fusco. “Semicontinuity problems in the calculus of variations”. Arch. Rational Mech. Anal., 86 (1986), pp. 125–145.MathSciNetGoogle Scholar
  2. [2]
    L. Ambrosio. “Compactness for a special class of functions of bounded variation”. To appear in Boll. Un. Mat. Dal..Google Scholar
  3. [3]
    L. Ambrosio. “Existence theory for a new class of variational problems”. Submitted to Archive for Rational Mech. Analysis.Google Scholar
  4. [4]
    H. Brezis, J.M. Coron and E.H. Lieb. “Estimations d’energie des applications de ]R3 a valeurs dans S 2 . C.R. Acad. Sc. Paris, 303 (1986), pp. 207–210.MathSciNetGoogle Scholar
  5. [5]
    H. Brezis, J.M. Coron and E.H. Lieb. “Harmonic maps with difects”. To appear in Comm. Math. Phys.,IMA preprint 253.Google Scholar
  6. [6]
    A.P. Calderon, A. Zygmund. “On the differentiability of functions which are of bounded variational in Tonelli’s sense”. Revista Union Mat. Arg., 20 (1960), pp. 102–121.MathSciNetGoogle Scholar
  7. [7]
    S. Chandrasekhar. “Liquid crystals”. Brown, Dienes and Labes Editors, Gordon and Breach, New York (1966), pp. 331–340.Google Scholar
  8. [8]
    S. Chandrasekhar. “Liquid crystals”. Cambridge University Press, Cambridge (1977).Google Scholar
  9. [9]
    D. Dal Maso. “Integral representation on BV(f1) of r-limits of integral functionals”. Manuscript Math., 30 (1980), pp. 387–413.CrossRefzbMATHGoogle Scholar
  10. [10]
    E. De Giorgi. “Su una teoria generale della misura (r — 1)-dimensionale in uno spazio a r dimensioni”. Ann. Mat. Pura Appl., 36 (1955), pp. 191–213.CrossRefGoogle Scholar
  11. [11]
    E. De Giorgi. “Nuovi teoremi relativi alle misure (r — 1)-dimensionale in uno spazio a r dimensioni”. Ricerche Alai., 4 (1955), pp. 95–113.zbMATHGoogle Scholar
  12. [12]
    E. De Giorgi. “Generalized limits in calculus of variations”. Quaderno Scuola Normale Superiore (1981), pp. 117–148.Google Scholar
  13. [13]
    E. De Giorgi. “Some semicontinuity and relaxation problems”. Ennio De Giorgi Colloquium,Researches Notes in Mathematics, 125 Pitman Publishing Inc., Boston (1985).Google Scholar
  14. [14]
    E. De Giorgi, G. Letta. “Une notion générale de convergence faible pour des fonctions croissante d’ensemble”. Ann. Scuola Normale Superiore, Pisa, Cl. Sci (4)bf 4, (1977), pp. 61–99.zbMATHGoogle Scholar
  15. [15]
    J.L. Ericksen. “Advances in liquid crystals”. Vol. 2, Glenn and Brown editors, Academic Press, New York (1976), pp. 233–298.Google Scholar
  16. [16]
    H. Federer. “Geometric measure theory”. Springer-Verlag, Berlin (1969).zbMATHGoogle Scholar
  17. [17]
    E. Giusti. “Minimal surfaces and functions of bounded variation”. Birkäuser, Boston (1984).CrossRefzbMATHGoogle Scholar
  18. [18]
    M. Miranda. “Distribuzioni aventi derivate misure. Insiemi di perimetro local-mente finitio”.Ann. Scuola Normale Superiore, Pisa, Cl. Sci, (3) 18 (1964), pp. 27–56.MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Miranda. “Superfici cartesiane generalizzate ed insiemi di perimetro local-mente finito sui prodotti cartesiani”. Ann. Scuola Normale Superiore, Pisa, Cl. Sci, (3) 18 (1964), pp. 515–542.MathSciNetzbMATHGoogle Scholar
  20. [20]
    L. Modica, S. Mortola. “Un esempio di I’-convergenza”. Boll. Un. Mat. Ital. (5) 14 B (1977), pp. 285–299.Google Scholar
  21. [21]
    C.B. Morrey. “Multiple integrals in the calculus of variations”. Springer -Yerlag, Berlin (1966).Google Scholar
  22. [22]
    D. Mumford, J. Shah. “Boundary detection by minimizing functionals”. Proc. of the conference on computer vision and pattern recognition, San Francisco (1985).Google Scholar
  23. [23]
    D. Mumford, J. Shah. “Optimal approximation by piecewise smooth functions and associated variational problems”. Submitted to Communication on Pure and Applied Mathematics.Google Scholar
  24. [24]
    E. Virga. “Forme di equilibrio di piccole Bocce di cristallo liquido”. Preprint No. 562 dell’Istituto di Analisi Numerica, Pavia (1987).Google Scholar
  25. [25]
    A.I. Vol’pert. “Spaces BV and quasi-linear equations”. Math. USSR Sb. 17 (1972).Google Scholar
  26. [26]
    A.I. Vol’pert, S.I. Hudjaev. “Analysis in classes of discontinuous functions and equations of mathematical physics”. Martinus Nijhoff Publisher, Dordrecht (1985).Google Scholar
  27. [27]
    H. Whitney. “Analytic extensions of differentiable functions defined in closed sets”. Trans. Amer. Mat. Soc., 36 (1934), pp. 63–89.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • E. De Giorgi
    • 1
  • L. Ambrosio
    • 1
  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations