Local and Global Directional Controllability: Sufficient Conditions and Examples

  • J. Warga
Part of the Ettore Majorana International Science Series book series (EMISS, volume 43)


We shall introduce our subject with an example from control theory. Consider the controlled differential equation
$$x(t)\, = \,\int\limits_0^t {f(s,x(s),\,u(s))} ds\,\forall t\, \in \,[0,1]$$


Order Condition Open Mapping High Order Condition Nonsmooth Optimization Conical Controllability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.S. Bernstein. “A systematic approach to higher order necessary conditions in optimization theory”. SIAM J. Control Optim., 22 (1984), pp. 49–60.CrossRefGoogle Scholar
  2. [2]
    H. Frankowska. “The first order necessary conditions for nonsmooth variational and control problems”. SIAM J. Control Optim., 22 (1984), pp. 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T.J. Gaffney. Private communication.Google Scholar
  4. [4]
    J. Warga. “Optimal control of differential and functional equations”. Academic Press, New York (1972).Google Scholar
  5. [5]
    J. Warga. “Controllability and necessary conditions in unilateral problems without differentiability assumptions”. SIAM J. Control Optim. 14 (1976), pp. 546–572.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Warga. “A second order condition that strengthens Pontryagin’s maximum principle”. J. Dif. Eqs., 28 (1978), pp. 284–307.MathSciNetCrossRefzbMATHADSGoogle Scholar
  7. [7]
    J. Warga. “A second order Lagrangian condition for restricted control problems”. J.Optim.Theory Applic., 24 (1978), pp. 465–473.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J. \Varga. “A hybrid relaxed-Lagrangian second order condition for minimum”. In Differential Games and Control Theory, Vol. 3, P.T. Liu and E. Roxin, eds., Marcel Dekker, New York (1979).Google Scholar
  9. [9]
    J. \Varga. “Fat homeomorphisms and unbounded derivate containers”. J.Math. Anal..4pplic.,81 (1981), pp. 545–560; ibid. 90, (1982), 582–583.Google Scholar
  10. [10]
    J. Warga.”Optimization and controllability without differentiability assumptions”. SIAM J. Control Optim., 21 (1983), pp. 837–855.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Warga.” Second order necessary conditions in optimization”. SIAM J. Control Optimization, 22 (1984), pp. 524–528.CrossRefGoogle Scholar
  12. [12]
    J. Warga. “Second order controllability and optimization with ordinary controls”. SIAM J. Control Optim., 23 (1985), pp. 49–59.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Warga. “Higher order conditions with and without Lagrange multipliers”. SIAM J. Control Optim., 24 (1986), pp. 715–730.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Warga. “Homeomorphisms and local Cl approximations”, J. Nonlinear Anal. TMA, 12 (1988), pp. 593–597.zbMATHGoogle Scholar
  15. [15]
    J. Warga. “Higher order conditions for conical controllability”, SIAM J. Control Optim.,to appear.Google Scholar
  16. [16]
    J. Warga. “Global directional controllability”, preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. Warga
    • 1
  1. 1.Dept. of MathematicsNortheastern Univ.BostonUSA

Personalised recommendations