Skip to main content

Morphological Image and Signal Processing

  • Chapter
Book cover Nonlinear Digital Filters

Abstract

The final goal of image processing and analysis is, often, to segment the image into objects in order to analyze the geometric properties (e.g., the size) and the structure of the objects and recognize them. The analysis of the geometric objects must be quantitative, because only such an analysis and description of the geometric objects can provide a coherent mathematical framework for describing the spatial organization. The quantitative description of geometrical structures is the purpose of mathematical morphology [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Serra, Image analysis and mathematical morphology, Academic Press, 1983.

    Google Scholar 

  2. James and James, Mathematical dictionary,Van Nostrand, 1976.

    Google Scholar 

  3. G. Matheron, Random sets and integral geometry, J. Wiley, 1975.

    Google Scholar 

  4. R.M. Haralick, S.R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532–550, July 1987.

    Article  Google Scholar 

  5. J. Serra, “Introduction to mathematical morphology”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 283–305, 1986.

    Article  MATH  Google Scholar 

  6. J. Serra (editor), Image analysis and mathematical morphology: theoretical advances, vol. 2, Academic Press, 1988.

    Google Scholar 

  7. H. Minkowski, “Volumen und oberflaechen”, Math. Annalen, vol. 57, pp. 447–495, 1903.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.R. Giardina, E.R. Dougherty, Morphological methods in image and signal processing, Prentice Hall, 1988.

    Google Scholar 

  9. E.R. Dougherty, C.R. Giardina, Image processing - continuous to discrete, vol. 1, Prentice-Hall, 1987.

    Google Scholar 

  10. V. Goetcherian, “From binary to gray level tone image processing using fuzzy logic concepts”, Pattern Recognition, vol. 12, pp. 7–15, 1980.

    Article  Google Scholar 

  11. C. Lantuejoul, J. Serra, “M-filters”, Proc. IEEE Int. Conf. on ASSP, pp. 2063–2066, 1982.

    Google Scholar 

  12. F. Meyer, “Contrast feature extraction”, in Quantitative Analysis of Microstructures in Material Sciences, Biology and Medicine,Special issue of Practical Metallography, J.L. Charmont editor, Reidner-Verlag, 1977.

    Google Scholar 

  13. A. Rosenfeld, “Connectivity in digital pictures”, J. Assoc. Comput. Mach., vol. 17, no. 1, pp. 146–160, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.R. Sternberg, “Parallel architecture for image processing”, Proc. 3rd COMPSAC, Chicago, 1979.

    Google Scholar 

  15. J. Serra, Morphologie pour les fonctions “a peu pres en tout ou rien”, Tech. report Centre de Morphologie Mathematique, Fontainebleau, France, 1975.

    Google Scholar 

  16. C. Lantuejoul, Sur le modele de Johnson-Mehl generalise, Tech. report Centre de Morphologie Mathematique, Fontainebleau, France, 1977.

    Google Scholar 

  17. S.R. Sternberg, “Biological image processing”, Computer, pp. 22–34, Jan. 1983.

    Google Scholar 

  18. S.R. Sternberg, “Grayscale morphology”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 333–355, 1986.

    Article  Google Scholar 

  19. R.L. Stevenson, G.R. Arce, “Morphological filters: statistics and further syntactic properties”, IEEE Transactions on Circuits and Systems, vol. CAS-34, pp. 1292–1305, Nov. 1987.

    Google Scholar 

  20. F. Meyer, “Iterative image transformations for an automatic screening of cervical smears”, J. Histoch. Cytochem., vol. 27, pp. 128–135, 1979.

    Article  Google Scholar 

  21. F. Meyer, “Automatic screening of cytological specimens”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 356–369, 1986.

    Article  Google Scholar 

  22. S.D. Pass, “Segmentation by shape discrimination using spatial filtering techniques”, in Digital Image Processing, J.C. Simon and R.M. Haralick editors, D. Reidel Publ. Co., 1981.

    Google Scholar 

  23. H.P. Kramer, J.B. Bruckner, “Iterations of nonlinear transformation for enhancement of digital images”, Pattern Recognition, vol. 7, 1975, pp. 53–58.

    Article  MathSciNet  MATH  Google Scholar 

  24. P.Maragos, R.W. Schafer, “Morphological skeleton representation and coding of binary images”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 5, pp. 1228–1244, Oct. 1986.

    Google Scholar 

  25. H. Blum, “A transformation for extracting new descriptors of shape”, Models for the Perception of Speech and Visual Forms, W. Wathen-Dunn editor, pp. 362–380, MIT Press, 1967.

    Google Scholar 

  26. H. Blum, “Biological shape and visual sciences (part I)”, J. Theoret. Biology, vol. 38, pp. 205–287, 1973.

    Article  Google Scholar 

  27. J.C. Kotelly, “A mathematical model of Blum’s theory of pattern recognition”, Rep. 63–164, Airforce Cambridge Res. Labs, Mass., 1963.

    Google Scholar 

  28. L. Calabi, “A study of the skeleton of plane figures”, Res. SR20–60429, Parke Mathematical Labs., Mass., 1965.

    Google Scholar 

  29. A. Rosenfeld, J.L. Pfalz, “Sequential operations in digital picture processing”, J. Assoc. Comput. Mach., vol. 13, pp. 471–494, Oct. 1966.

    Article  MATH  Google Scholar 

  30. J.C. Mott-Smith, “Medial axis transformations”, in Picture Processing and Psychopictorics, B.S. Lipkin and A. Rosenfeld editors, Academic, 1970.

    Google Scholar 

  31. U. Montanans, “A method for obtaining skeletons using a quasi-Euclidean distance”, J. Assoc. Comput. Mach., vol. 15, pp. 600–624, Oct. 1968.

    Article  Google Scholar 

  32. C. Lantuejoul, La squelettisation et son application aux mesures topologiques des mosaiques polycristallines, These de Docteur-Ingenieur, Ecole de Mines, Paris, 1978.

    Google Scholar 

  33. C. Lantuejoul, “Skeletonization in quantitative metallography”, in Issues of Digital Image Processing, R.M. Haralick and J.C. Simon editors, Sitjhoff and Noordhoff, 1980.

    Google Scholar 

  34. S. Peleg, A. Rosenfeld, “A min-max medial axis transformation”, IEEE Trans. on Pat. Anal. Machine Intelligence, vol. PAMI-4, no. 4, pp. 419421, July 1982.

    Google Scholar 

  35. N. Ahuja, L.S. Dark, D.L. Milgram, A. Rosenfeld, “Piecewise approximation of pictures using maximal neighborhoods”, IEEE Trans. Comput., vol. C-27, pp. 375–379, 1978.

    Google Scholar 

  36. S. Lobregt, P.W. Verbeek, F.C.A. Groen, “Three dimensional skeletonization: principles and algorithms”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 1, pp. 75–77, Jan. 1980.

    Article  Google Scholar 

  37. A. Rosenfeld, A.C. Kak, Digital picture processing, Academic Press, 1976.

    Google Scholar 

  38. S. Levialdi, “Parallel pattern processing”, IEEE Trans. System, Man and Cybern., SMC-1, pp. 292–296, 1971.

    Google Scholar 

  39. J.F. Bronskill, A.N. Venetsanopoulos, “The pecstrum”, 3rd ASSP Workshop on Spectral Estimation and Modelling, Boston, 1986.

    Google Scholar 

  40. J.F. Bronskill, A.N. Venetsanopoulos, “Multidimensional shape recognition using mathematical morphology”, Proc. Int. Workshop on Time-Varying Image Processing and Moving Object Recognition, Florence, Italy, pp. 3–18, 1986.

    Google Scholar 

  41. P.Maragos, R.W. Schafer, “Morphological filters, part I: their set theoretic analysis and relations to linear shift invariant filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 8, pp. 1153–1169, Aug. 1987.

    Google Scholar 

  42. P.Maragos, R.W. Schafer, “Morphological filters, part II: their relations to median, order statistic and stack filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 8, pp. 1170–1184, Aug. 1987.

    Google Scholar 

  43. Z. Zhou, A.N. Venetsanopoulos, “Analysis and implementation of morphological skeleton transforms”, IEEE Transactions on Acoustics, Speech and Signal Processing,in press.

    Google Scholar 

  44. Z. Zhou, A.N. Venetsanopoulos, “Morphological skeleton representation and shape recognition”, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 948–951, New York, 1988.

    Google Scholar 

  45. I. Pitas, A.N. Venetsanopoulos, “Morphological shape decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence,in press, Jan. 1990.

    Google Scholar 

  46. I. Pitas, A.N. Venetsanopoulos, “Morphological shape decomposition”, Proc. IEEE Int. Conf. on Computer Vision, London, 1987.

    Google Scholar 

  47. I. Picas, A.N. Venetsanopoulos, “Morphological shape representation”, Computer Vision, Graphics and Image Processing, under review.

    Google Scholar 

  48. I. Picas, N. Sidiropoulos, “Pattern recognition of binary image objects by using morphological shape decomposition”, Computer Vision, Graphics and Image Processing,under review.

    Google Scholar 

  49. I. Pitas, “Morphological signal analysis”, IEEE Transactions on Acoustics, Speech and Signal Processing, under review.

    Google Scholar 

  50. T. Pavlidis, “A review of algorithms for shape analysis”, Computer Graphics and Image Processing, vol. 7, no. 2, pp. 243–258, April 1978.

    Article  MathSciNet  Google Scholar 

  51. A. Rosenfeld, “Axial representations of shape”, Computer Vision, Graphics and Image Processing, vol. 33, pp. 156–173, 1986.

    Article  MATH  Google Scholar 

  52. Z. Zhou, A.N. Venetsanopoulos, “Pseudo-euclidean morphological skeleton transform for machine vision”, Proc. 1989 IEEE Int. Conf. on Acoustics, Speech and Signal Processing,Glasgow, England, 1989.

    Google Scholar 

  53. P. Maragos, A unified theory of translation invariant systems with applications to morphological analysis and coding of images, Ph.D. Thesis, Georgia Institute of Technology, 1985.

    Google Scholar 

  54. J.F. Bronskill, A. N. Venetsanopoulos, “Multidimensional shape description and recognition using mathematical morphology”, Journal of Intelligent and Robotic Systems, vol. 1, pp. 117–143, 1988.

    Article  Google Scholar 

  55. I. Pitas, A.N. Venetsanopoulos, “Morphological shape representation and recognition”, Proc. 3rd Workshop on Time-varying Image Processing and Object Recognition, Florence, Italy, 1989.

    Google Scholar 

  56. P. Maragos, “Pattern spectrum of images and morphological shape-size complexity”, Proc. 1987 IEEE Inc. Conf. on Acoustics, Speech and Signal Processing,pp. 241–244, Dallas, USA, 1987.

    Google Scholar 

  57. K. Preston Jr., filters“, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-31, pp. 861–876, Aug. 1983.

    Google Scholar 

  58. F.Y.C. Shih, O.R. Mitchell, “Threshold decomposition of grayscale morphology into binary morphology” IEEE Trans. on Pat. Anal. Machine Intelligence,vol. PAMI-11, no. 1, pp. 31–42, Jan. 1989.

    Google Scholar 

  59. X. Zhuang, R.M. Haralick, “Morphological structuring element decomposition”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 370–382, 1986.

    Article  MATH  Google Scholar 

  60. S.A. Rajala, H.A. Peterson, E.L. Delp, “Binary morphological coding of grayscale images”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2807–2811, Helsinki, Finland, 1988.

    Google Scholar 

  61. M. Binaghi, V. Cappellini, C. Raspolini, “Description and recognition of multidimensional signals using rotation and scale invariant morphological transformations”, Proc. European Signal Processing Conference, 1988.

    Google Scholar 

  62. P. Maragos, “Optimal morphological approaches to image matching and object detection”, Proc. IEEE Int. Conf. on Computer Vision, pp. 695–699, Tampa, Florida, 1988.

    Google Scholar 

  63. J.S.J Lee, R.M. Haralick, L.G. Shapiro, “Morphological edge detection”, International Journal of Robotics and Automation, vol. RA-3, no. 2, pp. 142–156, 1987.

    Google Scholar 

  64. R.J. Feehs, G.R. Arce, “Multidimensional morphological edge detection”, SPIE Visual Computing and Image Processing II, pp. 285–292, 1987.

    Google Scholar 

  65. J.A. Noble, “Morphological feature detection”, Proc. IEEE Int. Conf. on Computer Vision, pp. 112–115, Tampa, Florida, 1988.

    Google Scholar 

  66. W. Kohler, Gestalt psychology, Liveright Pub. Co., 1970.

    Google Scholar 

  67. R.M. Haralick, X. Zhuang, C. Lin, J. Lee, “The digital morphological sampling theorem”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2789–2791, Helsinki, Finland, 1988.

    Google Scholar 

  68. G.X. Ritter, J.L. Davidson, J.N. Wilson, “Beyond mathematical morphology”, SPIE Visual Computing and Image Processing II, vol. 845, pp. 260268, 1987.

    Google Scholar 

  69. K. Kotropoulos, I. Picas, “Texture analysis and segmentation of seismic images”, Proc. 1989 IEEE Int. Conf. on Acoustics, Speech and Signal Processing,pp. 1437–1440, Glasgow, England, 1989.

    Google Scholar 

  70. M.M. Skolnik, S. Kim, R. O’Bara, “Morphological algorithms for computing nonplanar point neighborhoods on cellular automata”, Proc. IEEE Int. Conf. on Computer Vision, pp. 106–111, Tampa, Florida, 1988.

    Google Scholar 

  71. C.D. Brown, R.W. Marvel, G.R. Arce, C.S. Ih, D.A. Fertell, “Morphological 3-d segmentation using laser structured light”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2803–2805, Helsinki, Finland, 1988.

    Google Scholar 

  72. C.-H. H. Chu, E.J. Delp, “Impulsive noise suppression and background normalization using morphological operators”, IEEE Transactions on Biomedical Engineering, vol. BME-36, no. 2, pp. 262–273, Feb. 1989.

    Article  Google Scholar 

  73. Y. Zhao, R.M. Haralick, “Binary shape recognition based on automatic morphological shape decomposition”, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1691–1694, Glasgow, Scotland, 1989.

    Google Scholar 

  74. P.K. Ghosh, “A mathematical model for shape description using Minkowski operators”, Computer Vision Graphics and Image Processing, vol. 43, no. 3, pp. 239–269, Dec. 1988.

    Article  Google Scholar 

  75. F. Meyer, J. Serra, “Contrasts and activity lattice”, Signal Processing, vol. 16, no. 4, pp. 303–317, April 1989.

    Article  MathSciNet  Google Scholar 

  76. F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology”, Signal Processing, vol. 16, no. 4, pp. 319333, April 1989.

    Google Scholar 

  77. F. Meyer, “Skeletons and perceptual graphs”, Signal Processing, vol. 16, no. 4, pp. 335–363, April 1989.

    Article  MathSciNet  Google Scholar 

  78. L. Vincent, “Graphs and mathematical morphology”, Signal Processing, vol. 16, no. 4, pp. 365–388, April 1989.

    Article  MathSciNet  Google Scholar 

  79. M. Schmitt, “Mathematical morphology and artificial intelligence: an automatic programming system”, Signal Processing, vol. 16, no. 4, pp. 389–401, April 1989.

    Article  Google Scholar 

  80. D. Jeulin, “Morphological modelling of images by sequential random functions” Signal Processing, vol. 16, no. 4, pp. 403–431, April 1989.

    Article  MathSciNet  Google Scholar 

  81. P. Maragos, “Pattern spectrum and multiscale shape representation”, IEEE Transactions on Pattern analysis and Machine Intelligence, vol. PAMI11, no. 7, pp. 701–716, July 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pitas, I., Venetsanopoulos, A.N. (1990). Morphological Image and Signal Processing. In: Nonlinear Digital Filters. The Springer International Series in Engineering and Computer Science, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6017-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6017-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5120-5

  • Online ISBN: 978-1-4757-6017-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics