Advertisement

Morphological Image and Signal Processing

  • I. Pitas
  • A. N. Venetsanopoulos
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 84)

Abstract

The final goal of image processing and analysis is, often, to segment the image into objects in order to analyze the geometric properties (e.g., the size) and the structure of the objects and recognize them. The analysis of the geometric objects must be quantitative, because only such an analysis and description of the geometric objects can provide a coherent mathematical framework for describing the spatial organization. The quantitative description of geometrical structures is the purpose of mathematical morphology [1].

Keywords

Image Object Medial Axis Morphological Image Mathematical Morphology Impulsive Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Serra, Image analysis and mathematical morphology, Academic Press, 1983.Google Scholar
  2. [2]
    James and James, Mathematical dictionary,Van Nostrand, 1976.Google Scholar
  3. [3]
    G. Matheron, Random sets and integral geometry, J. Wiley, 1975.Google Scholar
  4. [4]
    R.M. Haralick, S.R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532–550, July 1987.CrossRefGoogle Scholar
  5. [5]
    J. Serra, “Introduction to mathematical morphology”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 283–305, 1986.zbMATHCrossRefGoogle Scholar
  6. [6]
    J. Serra (editor), Image analysis and mathematical morphology: theoretical advances, vol. 2, Academic Press, 1988.Google Scholar
  7. [7]
    H. Minkowski, “Volumen und oberflaechen”, Math. Annalen, vol. 57, pp. 447–495, 1903.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    C.R. Giardina, E.R. Dougherty, Morphological methods in image and signal processing, Prentice Hall, 1988.Google Scholar
  9. [9]
    E.R. Dougherty, C.R. Giardina, Image processing - continuous to discrete, vol. 1, Prentice-Hall, 1987.Google Scholar
  10. [10]
    V. Goetcherian, “From binary to gray level tone image processing using fuzzy logic concepts”, Pattern Recognition, vol. 12, pp. 7–15, 1980.CrossRefGoogle Scholar
  11. [11]
    C. Lantuejoul, J. Serra, “M-filters”, Proc. IEEE Int. Conf. on ASSP, pp. 2063–2066, 1982.Google Scholar
  12. [12]
    F. Meyer, “Contrast feature extraction”, in Quantitative Analysis of Microstructures in Material Sciences, Biology and Medicine,Special issue of Practical Metallography, J.L. Charmont editor, Reidner-Verlag, 1977.Google Scholar
  13. [13]
    A. Rosenfeld, “Connectivity in digital pictures”, J. Assoc. Comput. Mach., vol. 17, no. 1, pp. 146–160, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    S.R. Sternberg, “Parallel architecture for image processing”, Proc. 3rd COMPSAC, Chicago, 1979.Google Scholar
  15. [15]
    J. Serra, Morphologie pour les fonctions “a peu pres en tout ou rien”, Tech. report Centre de Morphologie Mathematique, Fontainebleau, France, 1975.Google Scholar
  16. [16]
    C. Lantuejoul, Sur le modele de Johnson-Mehl generalise, Tech. report Centre de Morphologie Mathematique, Fontainebleau, France, 1977.Google Scholar
  17. [17]
    S.R. Sternberg, “Biological image processing”, Computer, pp. 22–34, Jan. 1983.Google Scholar
  18. [18]
    S.R. Sternberg, “Grayscale morphology”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 333–355, 1986.CrossRefGoogle Scholar
  19. [19]
    R.L. Stevenson, G.R. Arce, “Morphological filters: statistics and further syntactic properties”, IEEE Transactions on Circuits and Systems, vol. CAS-34, pp. 1292–1305, Nov. 1987.Google Scholar
  20. [20]
    F. Meyer, “Iterative image transformations for an automatic screening of cervical smears”, J. Histoch. Cytochem., vol. 27, pp. 128–135, 1979.CrossRefGoogle Scholar
  21. [21]
    F. Meyer, “Automatic screening of cytological specimens”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 356–369, 1986.CrossRefGoogle Scholar
  22. [22]
    S.D. Pass, “Segmentation by shape discrimination using spatial filtering techniques”, in Digital Image Processing, J.C. Simon and R.M. Haralick editors, D. Reidel Publ. Co., 1981.Google Scholar
  23. [23]
    H.P. Kramer, J.B. Bruckner, “Iterations of nonlinear transformation for enhancement of digital images”, Pattern Recognition, vol. 7, 1975, pp. 53–58.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    P.Maragos, R.W. Schafer, “Morphological skeleton representation and coding of binary images”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 5, pp. 1228–1244, Oct. 1986.Google Scholar
  25. [25]
    H. Blum, “A transformation for extracting new descriptors of shape”, Models for the Perception of Speech and Visual Forms, W. Wathen-Dunn editor, pp. 362–380, MIT Press, 1967.Google Scholar
  26. [26]
    H. Blum, “Biological shape and visual sciences (part I)”, J. Theoret. Biology, vol. 38, pp. 205–287, 1973.CrossRefGoogle Scholar
  27. [27]
    J.C. Kotelly, “A mathematical model of Blum’s theory of pattern recognition”, Rep. 63–164, Airforce Cambridge Res. Labs, Mass., 1963.Google Scholar
  28. [28]
    L. Calabi, “A study of the skeleton of plane figures”, Res. SR20–60429, Parke Mathematical Labs., Mass., 1965.Google Scholar
  29. [29]
    A. Rosenfeld, J.L. Pfalz, “Sequential operations in digital picture processing”, J. Assoc. Comput. Mach., vol. 13, pp. 471–494, Oct. 1966.zbMATHCrossRefGoogle Scholar
  30. [30]
    J.C. Mott-Smith, “Medial axis transformations”, in Picture Processing and Psychopictorics, B.S. Lipkin and A. Rosenfeld editors, Academic, 1970.Google Scholar
  31. [31]
    U. Montanans, “A method for obtaining skeletons using a quasi-Euclidean distance”, J. Assoc. Comput. Mach., vol. 15, pp. 600–624, Oct. 1968.CrossRefGoogle Scholar
  32. [32]
    C. Lantuejoul, La squelettisation et son application aux mesures topologiques des mosaiques polycristallines, These de Docteur-Ingenieur, Ecole de Mines, Paris, 1978.Google Scholar
  33. [33]
    C. Lantuejoul, “Skeletonization in quantitative metallography”, in Issues of Digital Image Processing, R.M. Haralick and J.C. Simon editors, Sitjhoff and Noordhoff, 1980.Google Scholar
  34. [34]
    S. Peleg, A. Rosenfeld, “A min-max medial axis transformation”, IEEE Trans. on Pat. Anal. Machine Intelligence, vol. PAMI-4, no. 4, pp. 419421, July 1982.Google Scholar
  35. [35]
    N. Ahuja, L.S. Dark, D.L. Milgram, A. Rosenfeld, “Piecewise approximation of pictures using maximal neighborhoods”, IEEE Trans. Comput., vol. C-27, pp. 375–379, 1978.Google Scholar
  36. [36]
    S. Lobregt, P.W. Verbeek, F.C.A. Groen, “Three dimensional skeletonization: principles and algorithms”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 1, pp. 75–77, Jan. 1980.CrossRefGoogle Scholar
  37. [37]
    A. Rosenfeld, A.C. Kak, Digital picture processing, Academic Press, 1976.Google Scholar
  38. [38]
    S. Levialdi, “Parallel pattern processing”, IEEE Trans. System, Man and Cybern., SMC-1, pp. 292–296, 1971.Google Scholar
  39. [39]
    J.F. Bronskill, A.N. Venetsanopoulos, “The pecstrum”, 3rd ASSP Workshop on Spectral Estimation and Modelling, Boston, 1986.Google Scholar
  40. [40]
    J.F. Bronskill, A.N. Venetsanopoulos, “Multidimensional shape recognition using mathematical morphology”, Proc. Int. Workshop on Time-Varying Image Processing and Moving Object Recognition, Florence, Italy, pp. 3–18, 1986.Google Scholar
  41. [41]
    P.Maragos, R.W. Schafer, “Morphological filters, part I: their set theoretic analysis and relations to linear shift invariant filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 8, pp. 1153–1169, Aug. 1987.Google Scholar
  42. [42]
    P.Maragos, R.W. Schafer, “Morphological filters, part II: their relations to median, order statistic and stack filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 8, pp. 1170–1184, Aug. 1987.Google Scholar
  43. [43]
    Z. Zhou, A.N. Venetsanopoulos, “Analysis and implementation of morphological skeleton transforms”, IEEE Transactions on Acoustics, Speech and Signal Processing,in press.Google Scholar
  44. [44]
    Z. Zhou, A.N. Venetsanopoulos, “Morphological skeleton representation and shape recognition”, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 948–951, New York, 1988.Google Scholar
  45. [45]
    I. Pitas, A.N. Venetsanopoulos, “Morphological shape decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence,in press, Jan. 1990.Google Scholar
  46. [46]
    I. Pitas, A.N. Venetsanopoulos, “Morphological shape decomposition”, Proc. IEEE Int. Conf. on Computer Vision, London, 1987.Google Scholar
  47. [47]
    I. Picas, A.N. Venetsanopoulos, “Morphological shape representation”, Computer Vision, Graphics and Image Processing, under review.Google Scholar
  48. [48]
    I. Picas, N. Sidiropoulos, “Pattern recognition of binary image objects by using morphological shape decomposition”, Computer Vision, Graphics and Image Processing,under review.Google Scholar
  49. [49]
    I. Pitas, “Morphological signal analysis”, IEEE Transactions on Acoustics, Speech and Signal Processing, under review.Google Scholar
  50. [50]
    T. Pavlidis, “A review of algorithms for shape analysis”, Computer Graphics and Image Processing, vol. 7, no. 2, pp. 243–258, April 1978.MathSciNetCrossRefGoogle Scholar
  51. [51]
    A. Rosenfeld, “Axial representations of shape”, Computer Vision, Graphics and Image Processing, vol. 33, pp. 156–173, 1986.zbMATHCrossRefGoogle Scholar
  52. Z. Zhou, A.N. Venetsanopoulos, “Pseudo-euclidean morphological skeleton transform for machine vision”, Proc. 1989 IEEE Int. Conf. on Acoustics, Speech and Signal Processing,Glasgow, England, 1989.Google Scholar
  53. [53]
    P. Maragos, A unified theory of translation invariant systems with applications to morphological analysis and coding of images, Ph.D. Thesis, Georgia Institute of Technology, 1985.Google Scholar
  54. [54]
    J.F. Bronskill, A. N. Venetsanopoulos, “Multidimensional shape description and recognition using mathematical morphology”, Journal of Intelligent and Robotic Systems, vol. 1, pp. 117–143, 1988.CrossRefGoogle Scholar
  55. [55]
    I. Pitas, A.N. Venetsanopoulos, “Morphological shape representation and recognition”, Proc. 3rd Workshop on Time-varying Image Processing and Object Recognition, Florence, Italy, 1989.Google Scholar
  56. P. Maragos, “Pattern spectrum of images and morphological shape-size complexity”, Proc. 1987 IEEE Inc. Conf. on Acoustics, Speech and Signal Processing,pp. 241–244, Dallas, USA, 1987.Google Scholar
  57. [57]
    K. Preston Jr., filters“, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-31, pp. 861–876, Aug. 1983.Google Scholar
  58. [58]
    F.Y.C. Shih, O.R. Mitchell, “Threshold decomposition of grayscale morphology into binary morphology” IEEE Trans. on Pat. Anal. Machine Intelligence,vol. PAMI-11, no. 1, pp. 31–42, Jan. 1989.Google Scholar
  59. [59]
    X. Zhuang, R.M. Haralick, “Morphological structuring element decomposition”, Computer Vision, Graphics and Image Processing, vol. 35, pp. 370–382, 1986.zbMATHCrossRefGoogle Scholar
  60. [60]
    S.A. Rajala, H.A. Peterson, E.L. Delp, “Binary morphological coding of grayscale images”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2807–2811, Helsinki, Finland, 1988.Google Scholar
  61. [61]
    M. Binaghi, V. Cappellini, C. Raspolini, “Description and recognition of multidimensional signals using rotation and scale invariant morphological transformations”, Proc. European Signal Processing Conference, 1988.Google Scholar
  62. [62]
    P. Maragos, “Optimal morphological approaches to image matching and object detection”, Proc. IEEE Int. Conf. on Computer Vision, pp. 695–699, Tampa, Florida, 1988.Google Scholar
  63. [63]
    J.S.J Lee, R.M. Haralick, L.G. Shapiro, “Morphological edge detection”, International Journal of Robotics and Automation, vol. RA-3, no. 2, pp. 142–156, 1987.Google Scholar
  64. [64]
    R.J. Feehs, G.R. Arce, “Multidimensional morphological edge detection”, SPIE Visual Computing and Image Processing II, pp. 285–292, 1987.Google Scholar
  65. [65]
    J.A. Noble, “Morphological feature detection”, Proc. IEEE Int. Conf. on Computer Vision, pp. 112–115, Tampa, Florida, 1988.Google Scholar
  66. [66]
    W. Kohler, Gestalt psychology, Liveright Pub. Co., 1970.Google Scholar
  67. [67]
    R.M. Haralick, X. Zhuang, C. Lin, J. Lee, “The digital morphological sampling theorem”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2789–2791, Helsinki, Finland, 1988.Google Scholar
  68. [68]
    G.X. Ritter, J.L. Davidson, J.N. Wilson, “Beyond mathematical morphology”, SPIE Visual Computing and Image Processing II, vol. 845, pp. 260268, 1987.Google Scholar
  69. K. Kotropoulos, I. Picas, “Texture analysis and segmentation of seismic images”, Proc. 1989 IEEE Int. Conf. on Acoustics, Speech and Signal Processing,pp. 1437–1440, Glasgow, England, 1989.Google Scholar
  70. [70]
    M.M. Skolnik, S. Kim, R. O’Bara, “Morphological algorithms for computing nonplanar point neighborhoods on cellular automata”, Proc. IEEE Int. Conf. on Computer Vision, pp. 106–111, Tampa, Florida, 1988.Google Scholar
  71. [71]
    C.D. Brown, R.W. Marvel, G.R. Arce, C.S. Ih, D.A. Fertell, “Morphological 3-d segmentation using laser structured light”, Proc. IEEE Int. Symp. on Circuits and Systems, pp. 2803–2805, Helsinki, Finland, 1988.Google Scholar
  72. [72]
    C.-H. H. Chu, E.J. Delp, “Impulsive noise suppression and background normalization using morphological operators”, IEEE Transactions on Biomedical Engineering, vol. BME-36, no. 2, pp. 262–273, Feb. 1989.CrossRefGoogle Scholar
  73. [73]
    Y. Zhao, R.M. Haralick, “Binary shape recognition based on automatic morphological shape decomposition”, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1691–1694, Glasgow, Scotland, 1989.Google Scholar
  74. [74]
    P.K. Ghosh, “A mathematical model for shape description using Minkowski operators”, Computer Vision Graphics and Image Processing, vol. 43, no. 3, pp. 239–269, Dec. 1988.CrossRefGoogle Scholar
  75. [75]
    F. Meyer, J. Serra, “Contrasts and activity lattice”, Signal Processing, vol. 16, no. 4, pp. 303–317, April 1989.MathSciNetCrossRefGoogle Scholar
  76. [76]
    F. Safa, G. Flouzat, “Speckle removal on radar imagery based on mathematical morphology”, Signal Processing, vol. 16, no. 4, pp. 319333, April 1989.Google Scholar
  77. [77]
    F. Meyer, “Skeletons and perceptual graphs”, Signal Processing, vol. 16, no. 4, pp. 335–363, April 1989.MathSciNetCrossRefGoogle Scholar
  78. [78]
    L. Vincent, “Graphs and mathematical morphology”, Signal Processing, vol. 16, no. 4, pp. 365–388, April 1989.MathSciNetCrossRefGoogle Scholar
  79. [79]
    M. Schmitt, “Mathematical morphology and artificial intelligence: an automatic programming system”, Signal Processing, vol. 16, no. 4, pp. 389–401, April 1989.CrossRefGoogle Scholar
  80. [80]
    D. Jeulin, “Morphological modelling of images by sequential random functions” Signal Processing, vol. 16, no. 4, pp. 403–431, April 1989.MathSciNetCrossRefGoogle Scholar
  81. [81]
    P. Maragos, “Pattern spectrum and multiscale shape representation”, IEEE Transactions on Pattern analysis and Machine Intelligence, vol. PAMI11, no. 7, pp. 701–716, July 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • I. Pitas
    • 1
  • A. N. Venetsanopoulos
    • 2
  1. 1.Aristotelian University of ThessalonikiGreece
  2. 2.University of TorontoCanada

Personalised recommendations