Skip to main content

Algorithms and Architectures

  • Chapter
Book cover Nonlinear Digital Filters

Abstract

One of the main problems in linear as well in the nonlinear image processing is the computational complexity and the execution speed of the image processing routines, especially for applications where real-time image processing is required. This problem mainly results from the amount of the data to be processed (e.g., 256K bytes for a single 512×512 8 bit image) as well as from the number of operations required per output pixel. Such operations are usually comparisons, additions, multiplications, and nonlinear function evaluations. Usually the number of operations required per output pixel is not very high. However, if this number is multiplied by the output image size (in pixels), the total amount of computations required is tremendous. Therefore, even simple nonlinear filters (e.g., median filters, erosion, dilation), which require only comparisons, are relatively slow for fast image processing applications. There are two solutions to the requirement for an increase of the speed of image processing routines. The first one is to construct fast algorithms for linear and nonlinear image processing. These algorithms can be relatively fast on general purpose computers for fast nonreal-time digital image processing. If real-time processing is a must, the only solution is to build image processors, whose architecture is optimized for image processing applications. If the performance of such image processors is not adequate, parallel image processing is the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.E. Knuth, The art of computer programming, vol. 3, Addison-Wesley, 1973.

    Google Scholar 

  2. E.Horowitz, S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, 1984.

    Google Scholar 

  3. T.S. Huang, G.J. Yang, G.Y. Tang, “A fast two-dimensional median filtering algorithm”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-27, no. 1, pp. 13–18, 1979.

    Article  Google Scholar 

  4. F. Pasian, “Sorting algorithms for filters based on ordered statistics: performance considerations”, Signal Processing, vol. 14, pp. 287–293, 1988.

    Google Scholar 

  5. M.O. Ahmad, D. Sundararajan, “A fast algorithm for two-dimensional median filtering”, IEEE Transactions on Circuits and Systems, vol. CAS-34, no. 11, pp. 1364–1374, Nov. 1987.

    Article  Google Scholar 

  6. A.V. Aho, J.E. Hoperoft, J.D. Ullman, The design and analysis of computer algorithms, Addison-Wesley, 1974.

    Google Scholar 

  7. P.E. Danielsson, “Getting the median faster”, Computer Graphics and Image Processing, vol. 17, pp. 71–78, 1981.

    Article  Google Scholar 

  8. E. Ataman, V.K. Aatre, K.M. Wong, “A fast method for real time median filtering”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-28, no. 4, pp. 415–421, Aug. 1980.

    Article  Google Scholar 

  9. R.T. Hoctor, S.A. Kassam, “An algorithm for order statistic determination and L-filtering”, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 1686–1689, 1988.

    Google Scholar 

  10. O. Yli-Harja, J. Astola, Y. Neuvo, “Generalization of the radix-method of finding the median to weighted median, order statistic and weighted order statistic filters”, SPIE Visual Communication and Image Processing,vol.

    Google Scholar 

  11. pp. 69–75, 1988.

    Google Scholar 

  12. V.V.B. Rao, K.S. Rao, “A new algorithm for real-time median filtering”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 6, pp. 1674–1675, Dec. 1986.

    Article  Google Scholar 

  13. R.T. Hoctor, S.A. Kassam, “An algorithm and a pipelined architecture for order statistic determination and L-filtering”, IEEE Transactions on Circuits and Systems, vol. CAS-36, no. 3, pp. 344–352, March 1989.

    Google Scholar 

  14. I. Picas, “Fast algorithms for running ordering and max/min calculation”, IEEE Transactions on Circuits and Systems, vol CAS-36, no. 6, pp. 795804, June 1989.

    Google Scholar 

  15. I.Pitas, A.N. Venetsanopoulos, “A new filter structure for the implementation of certain classes of image processing operations”, IEEE Transactions on Circuits and Systems, vol. CAS-35, no. 6, pp. 636–647, June 1988.

    Google Scholar 

  16. J. Bee Bednar, T.L. Watt, “Alpha trimmed means and their relationship to median filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, no. 1, pp. 145–153, Feb. 1984.

    Google Scholar 

  17. K. (Mazer, “Design and implementation of a single-chip 1-D median filter”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-31, no. 5, pp. 1164–1168, Oct 1983.

    Google Scholar 

  18. J. Alsford, P. Dewer, J. Illingworth, J. Kittler, J. Lewis, K. Paler, P. Wilde, W. Thomas, “CRS image processing system with VLSI modules”, in Image processing system architectures, J. Kittler, M. Duff editors, Research Studies Press, 1985.

    Google Scholar 

  19. P.E. Allen, Switched capacitor circuits, Van Nostrand Reinhold, 1984.

    Google Scholar 

  20. D.F. Franke editor, Charge coupled devices, Springer Verlag, 1980.

    Google Scholar 

  21. D.R. Morgan, “Analog sorting networks ranks inputs by amplitudes and allows selection”, Electronic Design 2, Jan. 18, pp. 72–74, Jan. 1973.

    Google Scholar 

  22. T. Jarske, P. Heinonen, Y. Neuvo, “Switched-capacitor linear median hybrid filters”, Proc. IEEE Int. Symp. on Circuits and Systems,pp. 260263, 1987.

    Google Scholar 

  23. J.S. Jimmy Ly, W. Harney Holmes, “Analog implementation of median filters”, IEEE Transactions on Circuits and Systems, vol. CAS-35, no. 8, pp. 1032–1033, Aug. 1988.

    Google Scholar 

  24. K. Chen, P. Heinonen, Q. Ye, Y. Neuvo, “Analog/Digital hybrid median filter realizations”, Proc. 1987Int. Conf. on Digital Signal Processing, pp. 349–352, Florence, Italy, 1987.

    Google Scholar 

  25. K. Preston, “Cellular logic computers for pattern recognition”, Computer, vol. 16, no. 1, pp. 36–47, Jan. 1983.

    Article  Google Scholar 

  26. M.J.B. Duff, “A cellular logic array for image processing”, Pattern Recognition, vol. 5, pp. 229–247, 1973.

    Article  Google Scholar 

  27. S.B. Gray, “Local properties of binary images in two dimensions”, IEEE Transactions on Computers, vol. C-20, no. 5, p. 551, May 1971.

    Article  Google Scholar 

  28. J.M. Herron et al., “A general purpose high speed logical transform processor”, IEEE Transactions on Computers, vol. C-31, no. 8, pp. 795–800, Aug. 1982.

    Article  Google Scholar 

  29. B. Kruse, “A parallel picture processing machine”, IEEE Transactions on Computers, vol. C-22, no. 12, pp. 1075–1087, Dec. 1973.

    Article  Google Scholar 

  30. K.E. Batcher, “Design of a massively parallel processor”, IEEE Transactions on Computers, vol. C-29, no. 9, pp. 836–840, Sept. 1980.

    Article  Google Scholar 

  31. S.R. Sternberg, “Biological image processing”, Computer, vol. 16, no. 1, pp. 22–34, Jan. 1983.

    Article  Google Scholar 

  32. J.C. Klein, J. Serra, “The texture analyzer”, Journal of Microscopy, vol. 95, pt. 2, pp. 349–356, Apr. 1972.

    Article  Google Scholar 

  33. S.R. Sternberg, “Pipeline architectures for image processing” in Multicomputers and image processing algorithms and programs, Academic Press, 1982.

    Google Scholar 

  34. S.R. Sternberg “Machine vision non-contact gaging”, Proc. Applied Machine Vision Conference, Chicago, 1984.

    Google Scholar 

  35. B. Picinbono, “Quadratic filters”, Proc. IEEE Int. Conf ASSP, Paris, France, pp. 298–301, 1982.

    Google Scholar 

  36. E. Biglieri, “Theory of Volterra processors and some applications” Proc. IEEE Int. Conf. ASSPParis, France, pp. 294–297, 1982.

    Google Scholar 

  37. G.L. Sicuranza, “Nonlinear digital filter realization by distributed arithmetic”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-33, no. 4, pp. 939–945, Aug. 1985.

    Google Scholar 

  38. G.L. Sicuranza, G. Ramponi, “Adaptive nonlinear digital filters using distributed arithmetic”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 3, pp. 518–526, June 1986.

    Article  Google Scholar 

  39. H.H. Chiang, C.L. Nikias, A.N. Venetsanopoulos, “Efficient implementations of quadratic digital filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 6, pp. 1511–1528, Dec. 1986.

    Article  Google Scholar 

  40. B.G. Mertzios, G.L. Sicuranza, A.N. Venetsanopoulos, “Efficient structures of two-dimensional quadratic digital filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-37, no. 5, pp. 765768, May 1989.

    Google Scholar 

  41. A.N. Venetsanopoulos, B.G. Mertzios, “A decomposition theorem and its implications to the design and realization of two-dimensional filters”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-33, no. 6, pp. 1562–1574, Dec. 1985.

    Google Scholar 

  42. B.G. Mertzios, A.N. Venetsanopoulos, “Modular realization of m-dimensional filters”, Signal Processing, 7, pp. 351–369, 1984.

    Article  Google Scholar 

  43. H.T. Kung, “Why systolic architectures”, Computers, 15, pp. 37–46, 1982.

    Article  Google Scholar 

  44. S.Y. Kung, “On supercomputing with systolic/wavefront array processors”, Proc. IEEE, 72, pp. 867–884, 1984.

    Article  Google Scholar 

  45. S.Y. Kung, VLSI array processors, Prentice Hall, 1987.

    Google Scholar 

  46. K. Hwang, F.A. Briggs, Computer architectures and parallel processing, McGraw-Hill, New York, 1984.

    Google Scholar 

  47. H.H. Lu, E.A. Lee, D.G. Messerschmitt, “Fast recursive filtering with multiple slow processing elements”, IEEE Transactions on Circuits and Systems, vol. CAS-32, no. 11, pp. 1119–1129, Nov. 1985.

    Google Scholar 

  48. B.G. Mertzios, A.N. Venetsanopoulos, “Implementation of quadratic digital filters via VLSI array processors”, Archiv fur Elektronik und Ubertrangungstechnik (Electronics and Communication), vol. 43, no. 3, pp. 153–157, 1989.

    Google Scholar 

  49. D.F. Elliot, R. Rao, Transforms, algorithms, analyses and applications, Academic Press, 1982.

    Google Scholar 

  50. B.G. Mertzios, V.L. Syrmos, “Implementation of digital filters via VLSI array processors”, IEE Proc., Part G, 135, pp. 78–82, 1988.

    MathSciNet  Google Scholar 

  51. K.K. Parhi, D.G. Messerschmitt, “Concurrent cellular VLSI adaptive filter architectures”, IEEE Transactions on Circuits and Systems, vol. CAS-34, no. 10, pp. 1141–1151, Oct. 1987.

    Article  Google Scholar 

  52. V.G. Mertzios, G.L. Sicuranza, A.N. Venetsanopoulos, “Efficient structures for two-dimensional quadratic filters”, Photogrammetria, vol. 43, no. 3/4, pp. 157–166, 1989.

    Article  Google Scholar 

  53. A.N. Venetsanopoulos, B.G. Mertzios, “A decomposition theorem and its implications to the design and realization of two-dimensional filters”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, no. 6, pp. 1562–1574, Dec. 1985.

    Google Scholar 

  54. C.L. Nikias, A.P. Chrysalis, A.N. Venetsanopoulos, “The LU decomposition and its implications to the realization of two dimensional digital filters, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, no. 3, pp. 694–711, June 1985.

    Article  Google Scholar 

  55. F.R. Gantmacher, The theory of matrices, vol. 1, Chelsea, New York, 1974.

    Google Scholar 

  56. H.H. Chiang, C.L. Nikias, A.N. Venetsanopoulos, “Efficient implementation of quadratic digital filters” IEEE Trans. Acoust. Speech Signal Processingvol. ASSP-34, no. 6, pp. 1511–1528, Dec. 1986.

    Google Scholar 

  57. Y. Lou, C.L. Nikias, A.N. Venetsanopoulos, “Efficient VLSI array processing structures for adaptive quadratic digital filters”, Circuits, Systems and Signal Processing, vol. 7, no. 2, pp. 253–273, Feb. 1988.

    Article  MATH  Google Scholar 

  58. D. Hatzinakos, C.L. Nikias, A.N. Venetsanopoulos, “Massively parallel architecture for quadratic digital filters” IEEE Trans. on Circuits and Systemsin press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pitas, I., Venetsanopoulos, A.N. (1990). Algorithms and Architectures. In: Nonlinear Digital Filters. The Springer International Series in Engineering and Computer Science, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6017-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6017-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5120-5

  • Online ISBN: 978-1-4757-6017-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics