Skip to main content

Abstract

In this chapter we summarize our contributions and point out to some future directions where this research can proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Parker and D. Ray, “A 1.6-GHz CMOS PLL with on-chip loop filter,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 337–343, Mar. 1998.

    Article  Google Scholar 

  2. P. R. Gray and R. G. Meyer, “Future directions in silicon ICs for RF personal communications,” in Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, pp. 83–90, 1995.

    Chapter  Google Scholar 

  3. K. L. Fong and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 46, pp. 231–239, Mar. 1999.

    Article  Google Scholar 

  4. J. C. Rudell, J.-J. Ou, R. S. Narayanaswami, G. Chien, J. A. Weldon, L. Lin, K.-C. Tsai, L. Tee, K. Khoo, D. Au, T. Robinson, D. Gerna, M. Otsuka, and P. R. Gray, “Recent developments in high integration multi-standard CMOS transceivers for personal communication systems,” in Proceedings 1998 International Symposium on Low Power Electronics and Design, pp. 149–154, 1998.

    Chapter  Google Scholar 

  5. J. C. Rudell, J.-J. Ou, T. B. Cho, G. Chien, F. Brianit, J. A. Weldon, and P. R. Gray, “A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 2071–2088, Dec. 1997.

    Article  Google Scholar 

  6. A. Patterson, “Computer aided analysis of noise effects in GSM,” Electronic Engineering, vol. 68, no. 838, pp. 53–54, 1996.

    Google Scholar 

  7. R. Gharpurey, Modeling and analysis of substrate coupling in integrated circuits. PhD thesis, University of California at Berkeley, 1996.

    Google Scholar 

  8. G. Wei, “Flicker noise process analysis,” in Proceedings of the 1993 IEEE International Frequency Control Symposium, pp. 321–325, 1993.

    Chapter  Google Scholar 

  9. K. Motoishi and T. Koga, “Simulation of a noise source with I/f spectrum by means of an RC circuit,” Electronics and Communications in Japan, vol. 65-A, pp. 19–7, Mar. 1982.

    Google Scholar 

  10. M. K. Nezami, “Phase noise analysis. 1. evaluate the impact of phase noise on receiver performance,” Microwaves, and RF, vol. 37, pp. 165–166, May 1998.

    Google Scholar 

  11. L. Tomba, `Analysis of the effect of phase noise in OFDM systems,” European Transactions on Telecommunications, vol. 9, no. 3, pp. 279–287, 1998.

    Article  Google Scholar 

  12. R. L. Howald, S. Kesler, and M. Kam, “BER performance analysis of OFDM-QAM in phase noise,” in Proceedings. 1998 IEEE International Symposium on Information Theory, p. 256, 1998.

    Google Scholar 

  13. V. C. Vannicola and P. K. Varshney, “Spectral dispersion of modulated signals due to oscillator phase instability: White and random walk phase model,” IEEE Transactions on Communications, vol. COM-31, pp. 886–895, July 1983.

    Google Scholar 

  14. W. P. Robins, Phase noise in signal sources: theory and applications, vol. 9 of 1EE telecommunications series. London: Peter Peregrinus on behalf of the Institution of Electrical Engineers, 1982.

    Google Scholar 

  15. B. K. Oksendal, Stochastic differential equations: an introduction with applications. Springer—Verlag, 1998.

    Google Scholar 

  16. D. N. Held and A. R. Kerr, “Analysis of noise in room-temperature millimeter-wave mixers,” in 1977 International Microwave Symposium Digest, pp. 483–486, 1977.

    Google Scholar 

  17. U. L. Rohde, A. M. Pavio, and R. A. Pucel, “Accurate noise simulation of microwave amplifiers using CAD,” Microwave Journal, vol. 31, pp. 130–141, Dec. 1988.

    Google Scholar 

  18. V. Rizzoli, F. Mastri, and C. Cecchetti, “Computer-aided noise analysis of MESFET and HEMT mixers,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, pp. 1401–1410, Sept. 1989.

    Article  Google Scholar 

  19. S. Heinen, J. Kunisch, and I. Wolff, “A unified framework for computer-aided noise analysis of linear and nonlinear microwave circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, pp. 2170–2175, Dec. 1991.

    Article  Google Scholar 

  20. P. Hudec, “Procedures for exact noise analysis of microwave circuits,” Microwave Journal, vol. 35, pp. 165–170, Sept. 1992.

    Google Scholar 

  21. P. Russer and S. Müller, “Noise analysis of microwave circuits with general topology,” in 1992 IEEE M7T-S International Microwave Symposium Digest, vol. 3, pp. 1481–1484, 1992.

    Google Scholar 

  22. M. Okumura, H. Tanimoto, and T. Sugawara, “Noise analysis method for nonlinear circuits with two frequency excitations using the computer,” Electronics and Communications in Japan Part 3, vol. 74, no. 4, pp. 41–50, 1991.

    Article  Google Scholar 

  23. V. Rizzoli, D. Masotti, and F. Mastri, “General-purpose noise analysis of forced nonlinear microwave circuits,” in Conference Proceedings MM 92, pp. 293–298, 1992.

    Google Scholar 

  24. V. Rizzoli, D. Masotti, and E Mastri, “Advanced piecewise-harmonic-balance noise analysis of nonlinear microwave circuits with application to schottky-barrier diodes,” in 1992 IEEE MTT-S International Microwave Symposium Digest, pp. 247–250, 1992.

    Chapter  Google Scholar 

  25. V. Rizzoli, F. Mastri, and D. Masotti, “General noise analysis of nonlinear microwave circuits by the piecewise harmonic-balance techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, pp. 807–819, May 1994.

    Article  Google Scholar 

  26. V. Rizzoli, D. Masotti, and F. Mastri, “Full nonlinear noise analysis of microwave mixers,” in 1994 IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 961–964, 1994.

    Google Scholar 

  27. V. Rizzoli, D. Masotti, and F. Mastri, “Computer-aided noise analysis of integrated microwave front-ends,” in 1995 IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1561–1564, 1995.

    Google Scholar 

  28. V. Rizzoli, F. Mastri, and C. Cecchetti, “Signal and noise analysis of large microwave front-ends by the inexact-newton harmonic-balance technique,” in 1998 IEEE M7T-S International Microwave Symposium Digest, vol. 3, pp. 1599–1602, 1998.

    Google Scholar 

  29. J. S. Roychowdhury, P. Feldmann, and D. E. Long, “Cyclostationary noise analysis of large RF circuits with multi-tone excitations,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 324–36, Mar. 1998.

    Article  Google Scholar 

  30. C. D. Hull, Analysis and Optimization of Monolithic RF Downconversion Receivers. PhD thesis, University of California, Berkeley, 1992.

    Google Scholar 

  31. C. D. Hull and R. G. Meyer, “A systematic approach to the analysis of noise in mixers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, pp. 909–919, Dec. 1993.

    Article  Google Scholar 

  32. R. Telichevesky, K. S. Kundert, and J. K. White, “Efficient AC and noise analysis for two-tone RF circuits,” in Proceedings of the 33rd Design Automation Conference, pp. 292–297, 1996.

    Google Scholar 

  33. V. Rizzoli, D. Masotti, F. Mastri, and A. Neri, “Noise analysis of a nonlinear microwave circuit driven by a noise sinusoidal source,” Microwave and Optical Technology Letters, vol. 5, pp. 534–537, Sept. 1992.

    Article  Google Scholar 

  34. A. Demir, E. Liu, and A. Sangiovanni-Vincentelli, “Time-domain non Monte-Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations,” IEEE Transactions for Computer-Aided Design, vol. 15, pp. 493–505, May 1996.

    Article  Google Scholar 

  35. O. Schein and G. Denk, “Numerical solution of stochastic differential-algebraic equations with applications to transient noise simulation of microelectronic circuits,” Journal of Computational and Applied Mathematics, vol. 100, no. 1, pp. 77–92, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Dobrowolski, “CAD oriented method for noise analysis of microwave circuits described by the nodal admittance matrix,” IEE Proceedings H Microwaves, Antennas and Propagation,vol. 140, pp. 321–325, Aug. 1993.

    Google Scholar 

  37. B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 331–43, Mar. 1996.

    Article  Google Scholar 

  38. D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.

    Article  Google Scholar 

  39. G. Sauvage, “Phase noise in oscillators: a mathematical analysis of Leeson’s model,” IEEE Transactions on Instrumentation and Measurement, vol. 1M-26, pp. 408–410, Dec. 1977.

    Google Scholar 

  40. U. L. Rohde and C.-R. Cheng, `Analysis and optimization of oscillators for low phase noise and low power consumption,” RF Design, vol. 18, pp. 70–79, Mar. 1995.

    Google Scholar 

  41. W. Anzill, F. X. Kärtner, and P. Russer, “Simulation of the phase noise of oscillators in the frequency domain,” Archiv für Elektronik und Übertragungstechnik, vol. 48, pp. 45–50, Jan. 1994.

    Google Scholar 

  42. E. Hafner, “The effect of noise in oscillators,” Proceedings of the IEEE, vol. 54, pp. 179198, Feb. 1966.

    Google Scholar 

  43. K. Kurokawa, “Noise in synchronized oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-16, no. 4, pp. 234–40, 1968.

    Google Scholar 

  44. J. R. Ashley, T. A. Barley, and G. J. Rast, Jr., “Automated spectral analysis of microwave oscillator noise,” in 1976 IEEE MIT-S International Microwave Symposium, pp. 227–229, 1976.

    Google Scholar 

  45. V. Rizzoli, D. Masotti, F. Mastri, and A. Neri, “Full nonlinear analysis of near-carrier noise in discriminator-stabilized microwave oscillators,” Microwave and Optical Technology Letters, vol. 6, no. 16, pp. 907–911, 1993.

    Article  Google Scholar 

  46. V. Rizzoli, A. Costanzo, E Mastri, and C. Cecchetti, “Harmonic-balance optimization of microwave oscillators for electrical performance, steady-state stability, and near-carrier phase noise,” in Proceedings of IEEFIMTT-S International Microwave Symposium, pp. 1401–4, May 1994.

    Google Scholar 

  47. M. Okumura and H. Tanimoto, “A time-domain method for numerical noise analysis of oscillators,” in Proceedings of the Asia South Pacific Design Automation Conference, pp. 477–82, Jan. 1997.

    Chapter  Google Scholar 

  48. B. De Smedth and G. Gielen, “Accurate simulation of phase noise in oscillators,” in Proceedings of the 23rd European Solid-State Circuits Conference, pp. 208–211, 1997.

    Google Scholar 

  49. A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 179–94, Feb. 1998.

    Article  Google Scholar 

  50. T. Ohira, “Higher-order analysis on phase noise generation in varactor-tuned oscillatorsbaseband noise upconversion in GaAs MESFET oscillators,” IEICE Transactions on Electronics, vol. E76-C, pp. 1851–1854, Dec. 1993.

    Google Scholar 

  51. J. Verdier, O. Llopis, R. Plana, and J. Graffeuil, “Analysis of noise upconversion in microwave field-effect transistor oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 1478–1483, Aug. 1996.

    Article  Google Scholar 

  52. R. Poore, “Accurate simulation of mixer noise and oscillator phase noise in large RFICs,” in 1997Asia-Pacific Microwave Conference Proceedings APMC ‘87, pp. 357–360, 1997.

    Chapter  Google Scholar 

  53. T. Felgentreff, W. Anzill, G. Olbrich, and P. Russer, “Analysis of g-r noise upconversion in oscillators,” in 1995 IEEE MTT-S International Microwave Symposium Digest, pp. 947–950, 1995.

    Chapter  Google Scholar 

  54. H. J. Siweris and B. Schiek, “Analysis of noise upconversion in microwave FET oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-33, pp. 233–242, Mar. 1985.

    Google Scholar 

  55. J. Y. C. Cheah, “Analysis of phase noise in oscillators,” RF Design, vol. 14, no. 12, pp. 99–100, 1991.

    Google Scholar 

  56. C.-L. Chen, X.-N. Hong, and B.-X. Gao, “A new and efficient approach to the accurate simulation of phase noise in microwave MESFET oscillators,” in 1995 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, pp. 230234, 1995.

    Google Scholar 

  57. A. Dec, L. Tóth, and K. Suyama, “Noise analysis of a class of oscillators,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 757–60, June 1998.

    Article  Google Scholar 

  58. A. Dec, L. Tóth, and K. Suyama, “Noise analysis of an oscillator with an Mtt3-order filter and comparator-type nonlinearity,” in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 225–228, 1998.

    Google Scholar 

  59. J. Yilin and X. Lizhi, “Analysis on phase noise for phase-lock radar frequency synthesizer,” in /997 IEEE International Conference on Intelligent Processing Systems, vol. 1, pp. 28–31, 1997.

    Google Scholar 

  60. K. Antoszkiewicz and J. Markowski, “Computer aided noise analysis of an oscillator,” Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 45, no. I, pp. 183–195, 1997.

    Google Scholar 

  61. A. A. Sweet, “A general analysis of noise in Gunn oscillators,” Proceedings of the IEEE, vol. 60, pp. 999–1000, Aug. 1972.

    Article  Google Scholar 

  62. A. Sjölund, “Analysis of large-signal noise in Read oscillators,” Solid-State Electronics, vol. 15, pp. 971–978, Sept. 1972.

    Article  Google Scholar 

  63. T. C. Weigandt, B. Kim, and P. R. Gray, “Analysis of timing jitter in CMOS ring oscillators,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 27–30, 1994.

    Chapter  Google Scholar 

  64. J. A. McNeill, “Jitter in ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 177–193, June 1997.

    Article  Google Scholar 

  65. A. A. Abidi and R. G. Meyer, “Noise in relaxation oscillators,” IEEE Journal of Solid-State Circuits, vol. SC-18, pp. 794–802, Dec. 1983.

    Google Scholar 

  66. A. Demir and A. Sangiovanni-Vincentelli, “Simulation and modeling of phase noise in open-loop oscillators,” in Proceedings of the IEEE 1996 Custom Integrated Circuits Conference, pp. 453–456, 1996.

    Google Scholar 

  67. M. Lax, “Classical noise. v. noise in self-sustained oscillators,” Physical Review, vol. CAS-160, pp. 290–307, 1967.

    Google Scholar 

  68. G. J. Foschini and G. Vannucci, “Characterizing filtered light waves corrupted by phase noise,” IEEE Transactions on Information Theory, vol. 34, pp. 1437–1448, Nov. 1988.

    Article  Google Scholar 

  69. A. P. Dekker, “Approximate noise analysis of a feedback oscillator using a nonlinear differential amplifier,” Archiv für Elektronik und Übertragungstechnik, vol. 41, no. 3, pp. 129–132, 1987.

    Google Scholar 

  70. J. Goldberg, “Nonlinear analysis of high Q oscillator phase noise,” in Proceedings of the 43rd Annual Symposium on Frequency Control 1989, pp. 63–74, 1989.

    Google Scholar 

  71. F. X. Kärtner, “Analysis of white and f a noise in oscillators,” International Journal of Circuit Theory and Applications, vol. 18, pp. 485–519, Oct. 1990.

    Article  MATH  Google Scholar 

  72. V. F. Kroupa and L. Sojdr, “Phase-lock loops of higher orders,” in Second International Conference on Frequency Control and Synthesis, pp. 65–68, 1989.

    Google Scholar 

  73. B. Kim, T. C. Weigandt, and P. R. Gray, “PLL/DLL system noise analysis for low jitter clock synthesizer design,” in Proceedings of the 1994 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 31–34, 1994.

    Google Scholar 

  74. U. L. Rohde, Microwave and wireless synthesizers: theory and design. Wiley, 1997.

    Google Scholar 

  75. J. C. Nallatamby, M. Prigent, J. C. Sarkissian, R. Quere, and J. Obregon, “A new approach to nonlinear analysis of noise behavior of synchronized oscillators and analog-frequency dividers,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1168–1171, Aug. 1998.

    Article  Google Scholar 

  76. L. Lin, L. Tee, and P. R. Gray, “A 1.4GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, pp. 204–205, 2000.

    Google Scholar 

  77. K. Lim, S. Choi, and B. Kim, “Optimal loop bandwidth design for low noise PLL applications,” in Proceedings of the ASP-DAC ‘87. Asia and South Pacific Design Automation Conference 1997, pp. 425–428, 1997.

    Google Scholar 

  78. K. Lim, C.-H. Park, and B. Kim, “Low noise clock synthesizer design using optimal bandwidth,” in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 163–166, 1998.

    Google Scholar 

  79. G. Kolumbân, “Frequency domain analysis of sampling phase-locked loops,” in Proceedings 1988 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 611–614, 1988.

    Chapter  Google Scholar 

  80. D. Asta and D. N. Green, “Analysis of a hybrid analog/switched-capacitor phase-locked loop,” IEEE Transactions on Circuits and Systems, vol. 37, pp. 183–197, Feb. 1990.

    Article  MathSciNet  Google Scholar 

  81. A. Demir, Analysis and simulation of noise in nonlinear electronic circuits and systems. PhD thesis, UC Berkeley, 1997.

    MATH  Google Scholar 

  82. W. E. Thain, Jr. and J. A. Connelly, “Simulating phase noise in phase-locked loops with a circuit simulator,” in Proceedings of the 1995 IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1760–1763, 1995.

    Google Scholar 

  83. L. Wu, H. Jin, and W. C. Black Jr., “Nonlinear behavioral modeling and simulation of phase-locked and delay-locked systems,” in Proceedings of the IEEE 2000 Custom Integrated Circuits Conference, pp. 447–450, 2000.

    Google Scholar 

  84. P. Heydani and M. Pedram, “Analysis of jitter due to power-supply noise in phase-locked loops,” in Proceedings of the IEEE 2000 Custom Integrated Circuits Conference, pp. 443–446, 2000.

    Chapter  Google Scholar 

  85. M. Farkas, Periodic Motions. Applied mathematical sciences, New York: Springer-Verlag, 1994.

    Book  Google Scholar 

  86. R. Grimshaw, Nonlinear ordinary differential equations. Applied mathematics and engineering science texts, Oxford, Boston: Blackwell Scientific Publications, 1990.

    Google Scholar 

  87. B. van der Pol, “On oscillation hysteresis in a simple triode generator,” Philosophical Magazine, vol. 43, pp. 177–193, 1922.

    Article  Google Scholar 

  88. P. Hagedorn, Nichtlineare Schwingungen. Oxford University Press, 1981.

    Google Scholar 

  89. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. John Wiley, and Sons, 1979.

    Google Scholar 

  90. L. Arnold, Stochastische Differentialgleichungen: Theorie und Anwendung. John Wiley, and Sons, 1974.

    Google Scholar 

  91. C. W. Gardiner, Handbook of stochastic methods for physics, chemistry, and the natural sciences, vol. 13 of Springer series in synergetics. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, second ed., 1983.

    Book  Google Scholar 

  92. G. R. Grimmett and D. R. Stirzaker, Probability and random processes. New York: Oxford University Press, second ed., 1992.

    Google Scholar 

  93. Risken, The Fokker-Planck equation: methods of solution and applications, vol. 18 of Springer series in synergetics. Berlin; New York: Springer-Verlag, second ed., 1996.

    Google Scholar 

  94. W. A. Gardner, Introduction to Random Processes: with Applications to Signals and systems. New York: McGraw-Hill, second ed., 1990.

    Google Scholar 

  95. K. S. Kundert, J. K. White, and A. L. Sangiovanni-Vincentelli, Steady-state methods for simulating analog and microwave circuits. Boston; Dordrecht: Kluwer Academic Publishers, 1990.

    Google Scholar 

  96. T. J. Aprille, Jr. and T. N. Trick, “A computer algorithm to determine the steady-state response of nonlinear oscillators,” IEEE Transactions on Circuit Theory, vol. CT19, pp. 354–360, July 1972.

    Google Scholar 

  97. T. J. Aprille, Jr. and T. N. Trick, “Steady-state analysis of nonlinear circuits with periodic inputs,” Proceedings of the IEEE, vol. 60, pp. 108–114, Jan. 1972.

    MathSciNet  Google Scholar 

  98. P. Kinget, “A fully integrated 2.7 V 0.35 pm CMOS VCO for 5 GHz wireless applications,” in Digest of Technical Papers IEEE International Solid-State Circuits Conference, pp. 226–227, 1998.

    Google Scholar 

  99. P. R. Gray and R. G. Meyer, Analysis and design of Analog Integrated Circuits. New York: Wiley, third ed., 1993.

    Google Scholar 

  100. A. Papoulis, Probability, Random Variables and Stochastic Processes. McGraw Hill, third ed., 1991.

    Google Scholar 

  101. K. L. Fong, C. D. Hull, and R. G. Meyer, “A class AB monolithic mixer for 900-MHz applications,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 1166–1172, Aug. 1997.

    Article  Google Scholar 

  102. H.-G. Brachtendorf, G. Welsch, R. Laur, and A. Bunse-Gerstner, “Numerical steady state analysis of electronic circuits driven by multi-tone signals,” Electrical Engineering, vol. 79, pp. 103–112, 1996.

    Article  Google Scholar 

  103. J. S. Roychowdhury, “Efficient methods for simulating highly nonlinear multi-rate circuits,” in Proceedings of the 34th Design Automation Conference, pp. 269–274, 1997.

    Chapter  Google Scholar 

  104. H.-G. Brachtendorf, G. Welsch, and R. Laur, “A novel time-frequency method for the simulation of the steady state of circuits driven by multi-tone signals,” in Proceedings of the 1997 IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1508–1511, 1997.

    Chapter  Google Scholar 

  105. K. S. Kundert, Steady state methods for simulating analog circuits. PhD thesis, University of California at Berkeley, 1989.

    Google Scholar 

  106. B. K. oksendal, Stochastic differential equations: an introduction with applications. Springer—Verlag, 1998.

    Google Scholar 

  107. C. W. Gardiner, Handbook of stochastic methods for physics, chemistry, and the natural sciences, vol. 13 of Springer series in synergetics. Berlin, Heidelberg, New York, Tokyo: Springer—Verlag, second ed., 1983.

    Book  Google Scholar 

  108. P. Dupuis and H. J. Kushner, “Stochastic systems with small noise, analysis and simulation; a phase locked loop example,” SIAM Journal on Applied Mathematics, vol. 47, pp. 643–661, June 1987.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Dembo and O. Zeitouni, Large deviations techniques and applications. Boston: Jones and Bartlett, 1993.

    MATH  Google Scholar 

  110. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems. Springer—Verlag, 1984.

    Google Scholar 

  111. B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw Hill, 2000.

    Google Scholar 

  112. A. Mehrotra, Simulation and Modelling Techniques for Noise in Radio Frequency Integrated Circuits. PhD thesis, University of California, Berkeley, 1999.

    Google Scholar 

  113. A. Ali and J. L. Tham, “A 900MHz frequency symthesizer with integrated LC voltage-controlled oscillator,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, pp. 390–391, 1996.

    Google Scholar 

  114. J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, pp. 372–373, 1998.

    Google Scholar 

  115. A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterisation,” in Proceedings 1998 Design Automation Conference, pp. 26–31, 1998.

    Google Scholar 

  116. A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterization,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 655–674, May 2000.

    Article  Google Scholar 

  117. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems. Springer—Verlag, 1984.

    Google Scholar 

  118. O. Zeitouni. personal communication, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mehrotra, A., Sangiovanni-Vincentelli, A. (2004). Conclusions and Future Directions. In: Noise Analysis of Radio Frequency Circuits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6007-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6007-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5404-6

  • Online ISBN: 978-1-4757-6007-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics