Skip to main content

Dimensional Analysis of the Electrorheological Behavior of Milk Chocolate

  • Chapter
Book cover New Techniques in the Analysis of Foods

Abstract

Electrorheology (ER) is concerned with the effects of electric fields on the flow properties of liquid suspensions that show an increase in apparent viscosity and a greater yield stress during exposure to electric fields. These fluids require polarizable particles suspended in an insulating (non-conducting) oil. The ER phenomenon results from the formation of microstructures of the dispersed solid phase. In other words, the field-induced microstructures attempt to span the fluid gap, causing reduced fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Stangroom. 1989. The Bingham plastic model of ER fluids and its implications, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 199–206.

    Google Scholar 

  2. R. Pool. 1990. The fluids with a case of split personality, Science 247: 1180.

    Article  CAS  Google Scholar 

  3. R.T. Bonnecaze, J.F. Brady. 1992. Yield stresses in electrorheological fluids, J. Rheol. 36: 73.

    Article  CAS  Google Scholar 

  4. H. Block, J.P. Kelly. 1988. Electro-rheology, J. Phys. D: Appl. Phys. 21: 1661.

    Google Scholar 

  5. C.F. Zukoski. 1993. Material properties and the electrorheological response, Annu. Rev. Mater. Sci. 23: 45.

    Google Scholar 

  6. Y.F. Deinega, G.V. Vinogradov. 1984. Electric fields in the rheology of disperse systems, Rheol. Acta 23: 636.

    Google Scholar 

  7. T.C. Jordan, M.T. Shaw. 1989. Electrorheology, IEEE Trans. Elec. Insul. 24: 849.

    Google Scholar 

  8. D.L. Klass, T.W. Martinek. 1967. Electroviscous fluids II. electrical properties, J. Appl. Phys. 38: 75.

    Google Scholar 

  9. H. Uejima, 1972. Dielectric mechanism and rheological properties of electro-fluids, Jap. J. Appl. Phys. 11: 319.

    Google Scholar 

  10. D.L. Klass, T.W. Martinek. 1967. Electroviscous fluids I. rheological properties, J. Appl. Phys. 38: 67.

    Google Scholar 

  11. H. Block, J.P. Kelly, A. Qin, T. Watson. 1990. Materials and mechanisms in electrorheology, Langmuir 6: 6.

    Article  CAS  Google Scholar 

  12. W. Wong, M.T. Shaw. 1989. The role of water in electrorheological fluids, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 191–198.

    Google Scholar 

  13. T.C. Halsey. 1992. Electrorheological fluids, Science 258: 761.

    Article  CAS  Google Scholar 

  14. A.P. Gast, C.F. Zukoski. 1989. Electrorheological fluids as colloidal suspensions, Adv. Colloid Interface Sci. 30: 153.

    Google Scholar 

  15. M.T. Shaw. 1993. Structure-property relationships in ER fluids, in: “The Fluids Engineering Conference,” D.A. Siginer, J.H. Kim, and R.A. Bajura, eds., ASME FED-Vol. 164, pp. 43–48.

    Google Scholar 

  16. V.I. Kordonsky, E.V. Korobko, T.G. Lazareva. 1991. Electrorheological polymer-based suspensions, J. Rheol. 35: 1427.

    Article  CAS  Google Scholar 

  17. T.A. Vorobeva, I.N. Vlodavets, P.I. Zubov. 1969. The size distribution of oriented aggregates formed in suspensions with the application of an alternating electric field, Kolloid. Zh. 31: 668.

    Google Scholar 

  18. T.B. Jones. 1989. Orientation of particle chains in AC electric fields, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 14–26.

    Google Scholar 

  19. I. Yang, A.D. Shine. 1992. Electrorheology of a nematic poly(n-hexyl isocyanate) solution, J. Rheol. 36: 1079.

    Article  CAS  Google Scholar 

  20. V.I. Bezruk, A.N. Lazarev, V.A. Malov, and O.G. Usyarov. 1972. Frequency effect of an external electric field on the interaction between dispersed particles in suspensions, K. Zhurnal 34: 321.

    CAS  Google Scholar 

  21. J.C. Hill, T.H. Van Steenkiste. 1991. Response times of electrorheolgical fluids, J. Appl. Phys. 70: 1207.

    Google Scholar 

  22. G.B. Thurston, E.B. Gaertner. 1991. Viscoelasticity of electrorheological fluids during oscillatory flow in a rectangular channel, J. Rheol. 35: 1327.

    Article  CAS  Google Scholar 

  23. H.T. See, M. Doi. 1992. Shear resistance of electrorheological fluids under time-varying electric fields, J. Rheol. 36: 1143.

    Article  CAS  Google Scholar 

  24. R.C. Kanu, M.T. Shaw. 1992. Electrorheological fluids based on PBZT particles with controlled geometry, in: “Proceedings of the Xlth International Congress on Rheology,” pp. 766–768.

    Google Scholar 

  25. D.J. Klingenberg, C.F. Zukoski. 1990. Studies on the steady-shear behavior of electrorheological suspensions, Langmuir 6: 15.

    Article  CAS  Google Scholar 

  26. H. Conrad, A.F. Sprecher, Y. Choi, Y. Chen. 1991. The temperature dependence of the electrical properties and strength of electrorheological fluids, J. Rheol. 35: 1393.

    Article  CAS  Google Scholar 

  27. R. Tao, J.T. Woestman, N.K. Jaggi. 1989. Electric field induced solidification, Appl. Phys. Lett. 55: 1844.

    Google Scholar 

  28. Jaggi, N.K., J.T. Woestman, R. Tao. 1989. Possible phase transition in electrorheological fluids, in: “Proceedings of the Second International Conference on ER Fluids,” J.D. Carlson, A.F. Sprecher, H. Conrad, eds., Technomic Publishing, Lancaster, PA, pp. 53–62.

    Google Scholar 

  29. Z. Lou, R.D. Ervin, F.E. Filisko. 1993. The influence of viscometer dynamics on the characterization of an electrorheological fluid under sinusoidal electric excitation, J. Rheol. 37: 55.

    Article  CAS  Google Scholar 

  30. Y. Otsubo, M. Sekine, and S. Katayama. 1992. Electrorheological properties of silica suspensions, J. Rheol. 36: 479.

    Article  CAS  Google Scholar 

  31. W.B. Russel, D.A. Saville,W. R. Schowalter. 1989. “Colloidal Dispersions,” Cambridge University Press, London.

    Google Scholar 

  32. L. Marshall, C.F. Zukoski IV, J.W. Goodwin. 1989. Effects of electric fields on the rheology of non-aqueous concentrated suspensions, J. Chem. Soc. Faraday Trans. 1. 85: 2785.

    Google Scholar 

  33. D.J. Klingenberg, D. Dierking, C.F. Zukoski. 1991. Stress-transfer mechanisms in electrorheological suspensions, J. Chem. Soc. Faraday Trans. 87: 425.

    Google Scholar 

  34. P.M. Adriani, A.P. Gast. 1988. A microscopic model of electrorheology, Phys. Fluids 31: 2757.

    Google Scholar 

  35. C.R. Daubert, J.F. Steffe. 1996. Electrorheological behavior of milk chocolate, J. Texture Stud. 27: 93.

    Article  Google Scholar 

  36. J. Chevalley. 1974. Rheology of chocolate, J. Texture Stud. 22: 177.

    Google Scholar 

  37. H. L. Langhar 1951 “Dimensional Analysis,” John Wiley and Sons, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daubert, C.R., Steffe, J.F. (1998). Dimensional Analysis of the Electrorheological Behavior of Milk Chocolate. In: Tunick, M.H., Palumbo, S.A., Fratamico, P.M. (eds) New Techniques in the Analysis of Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5995-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5995-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3307-2

  • Online ISBN: 978-1-4757-5995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics