Skip to main content

Bioluminescence

Shedding New Light on Old Problems

  • Chapter
Book cover New Techniques in the Analysis of Foods
  • 359 Accesses

Abstract

Light travels at 186,281 miles/sec and is one component of the various electromagnetic waves transmitted through space. This electromagnetic radiation ranges in frequency from a meter or more (radio waves), down to x-rays with wavelengths of less than a billionth of a meter. Visible light (wavelengths of 380–770 nm) lies between radio waves and x-rays on the spectrum. At x-ray and shorter wavelengths, electromagnetic radiation is particle-like in its behavior, whereas toward the long wavelength end of the spectrum the behavior is wavelike. Because the visible portion is intermediate between the two, it exhibits both wave and particle properties. These properties allow light waves to be manipulated so that they can be filtered by wavelength or amplified. This ability to exploit light makes it invaluable as the signaling step in diagnostic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Meighen. 1993. Bacterial bioluminescence: organization, regulation, and application of the lux genes, FASEB Journal 7: 1016.

    CAS  Google Scholar 

  2. P. J. Herring. 1987. Systematic distribution of bioluminescence in living organisms, J. Biolumin. Chemilumin. 1: 147.

    Article  CAS  Google Scholar 

  3. International Commission on Microbiological Specifications for Foods. 1988. Microorganisms in Foods 4. Application of the Hazard Analysis Critical Control Point (HACCP) System to Ensure the Microbiological Safety and Quality of Foods. Oxford, U.K.: Blackwell Scientific Publications Ltd.

    Google Scholar 

  4. M. W. Griffiths. 1997. Potential for rapid microbiological testing with HACCP, AOAC Journal In press.

    Google Scholar 

  5. M. W. Griffiths. 1996. The role of ATP bioluminescence in the food industry: New light on old problems, Food Technol. 50 (6): 62.

    CAS  Google Scholar 

  6. A. L. Kyriakades, and P. D. Patel. 1994. Luminescence techniques for microbiological analysis of foods, in “Rapid Analysis Techniques in Food Microbiology,” P. Patel, ed., Blackie Academic and Professional, Glasgow, pp. 196–231.

    Google Scholar 

  7. J.-M. Hawronskyj, and J. Holah. 1997. ATP: A universal hygiene monitor, Trends Food Sci. Technol. 8: 79.

    Article  CAS  Google Scholar 

  8. E. W. Chappelle, and G. V. Levin. 1968. Use of the firefly bioluminescence reaction for the rapid detection and counting of bacteria, Biochem. Med. 2: 41.

    Article  Google Scholar 

  9. M. DeLuca, and W. D. McElroy. 1978. Purification and properties of firefly luciferase, Meth. Enzymol. 57: 3.

    Article  CAS  Google Scholar 

  10. A. N. Sharpe, M. N. Woodrow, and A. K. Jackson. 1970. Adenosine triphosphate (atp) levels in foods contaminated by bacteria, J. Appl. Bacteriol. 33: 758.

    Article  CAS  Google Scholar 

  11. A. N. Sharpe. 1994. Development and evaluation of membrane filtration techniques in microbial analysis, in “Rapid Analysis Techniques in Food Microbiology,” P. Patel, ed., Blackie Academic and Professional, Glasgow, U.K., pp. 29–660

    Google Scholar 

  12. M. W. Griffiths. 1995. Bioluminescence and the food industry, J. Rapid Methods Automation Microbiol. 4: 65.

    Article  Google Scholar 

  13. M. W. Griffiths. 1993. Applications of bioluminescence in the dairy industry, J. Dairy Sci. 76: 31–18.

    Article  Google Scholar 

  14. D. A. Bautista, S. Barbut, J.-P. Vaillancourt, L. J. Harris, and M. W. Griffiths. 1996. Statistical evaluation of a poultry process for the determination of overall quality using conventional microbiology and ATP bioluminescence, in Abstracts of the 83rd Annual Meeting of the International Association of Milk, Food and Environmental Sanitarians, Seattle, WA, 30 June -3 July, IAMFES, P. 34.

    Google Scholar 

  15. M. Velazquez, and J. M. Fiertag. 1997. Quenching and enhancement effects of ATP extractants, cleansers, and sanitizers on the detection of the ATP bioluminescence signal, J. Food Prot. 60: 799.

    CAS  Google Scholar 

  16. W. Reybroek, and E. Schram. 1995. Improved filtration method to assess bacteriological quality of raw milk based on bioluminescence of adenosine triphosphate, Neth. Milk Dairy J. 49: 1.

    Google Scholar 

  17. J. Rigarlsford. 1992. The pros and cons of using ATP to monitor hygiene, J. Biolumin. Chemilumin. 7: 258.

    Google Scholar 

  18. E. Schram. 1991. Evolution of bioluminescent ATP assays, in “Bioluminescence and Chemiluminescence: Current Status,” P. E. Stanley and L. J. Kricka, eds., John Wiley and Sons. Chichester, U.K., pp. 407–412.

    Google Scholar 

  19. S. E. Brolin, E. Borglund, and A. Agren. 1979. Photokinetic microassay of adenylate kinase using the firefly luciferase reaction, J. Biochem. Biophys. Meths. 1: 163.

    Article  CAS  Google Scholar 

  20. M. J. Murphy, D. J. Squirrell, M. F. Sanders, and R. Blasco. 1997. The use of adenylate kinase for the detection and identification of low numbers of microorganisms, in “Bioluminescence and Chemiluminescence; Molecular Reporting With Photons,” J. W. Hastings, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 319–322.

    Google Scholar 

  21. D. J. Squirrel, and M. J. Murphy. 1995. Adenylate kinase as a cell marker in bioluminescent assays, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 486–489.

    Google Scholar 

  22. J.-M. Hawronskyj, R. S. Chittock, C. W. Wharton, and J. T. Holah. 1995. Low level bacterial contamination measured using a novel bioluminescent assay, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 411–414.

    Google Scholar 

  23. M. F. Sanders. 1995. A rapid bioluminescent technique for the detection and identification of Listeria monocytogenes in the presence of Listeria innocua, in “Bioluminescence and Chemiluminescence; Fundamentals and Applied Aspects,” A. K. Campbell, L. J. Kricka, and P. E. Stanley, eds., John Wiley and Sons, Chichester, U.K., pp. 454–457.

    Google Scholar 

  24. L. McIntyre, S. A. A. Jassim, and M. W. Griffiths. 1996. Development of a bacteriophage-mediated ATP-bioluminescent detection system for Listeria monocytogenes, in Abstracts of the 83rd Annual Meeting of the International Association of Milk, Food and Environmental Sanitarians, Seattle, WA, 30 June -3 July, IAMFES, P. 70.

    Google Scholar 

  25. E. A. Meighen. 1988. Enzymes and genes from the lux operons of bioluminescent bacteria, Ann. Rev. Microbiol. 42: 151.

    Article  CAS  Google Scholar 

  26. E. A. Meighen. 1991. Molecular biology of bacterial bioluminescence, Microbiol. Rev. 55 (1): 123.

    CAS  Google Scholar 

  27. E. A. Meighen. 1991. Molecular biology of bioluminescence, in “Bioluminescence and Chemiluminescence: Current Status,” R. E. Stanley and L. J. Kricka, eds„ John Wiley and Sons Ltd., Chichester, U.K., pp. 3–10.

    Google Scholar 

  28. E. A. Meighen, and P. V. Dunlap. 1993. Physiological, biochemical and genetic control of bacterial bioluminescence, Adv. Microbial Physiol. 34: 1.

    Article  CAS  Google Scholar 

  29. J. Baker, M. W. Griffiths, and D. Collins-Thompson. 1992. Bacterial bioluminesence: application in food microbiology, J. Food Prot. 55: 62.

    CAS  Google Scholar 

  30. C. E. R. Dodd, G. S. A. B. Stewart, and W. M. Waites. 1990. Biotechnology-based methods for the detection, enumeration and epidemiology of food poisoning and spoilage organisms, Biotechnol. Genet. Eng. Rev. 8: 1.

    Article  CAS  Google Scholar 

  31. R. J. Hill, C. E. D. Rees, M. K. Winson, and G. S. A. B. Stewart. 1993. The application of lux genes, Biotechnol. Appl. Biochem. 17: 3.

    CAS  Google Scholar 

  32. S. A. A. Jassim, A. Ellison, S. P. Denyer, and G. S. A. B. Stewart. 1990. In vivo bioluminescence-a cellular reporter for research and industry, J. Biolumin. Chemilwnin. 5: 115.

    Article  CAS  Google Scholar 

  33. G. S. A. B. Stewart. 1990. In vivo bioluminescence: New potentials for microbiology, Lett. Appl. Microbiol. 10: 1.

    Article  CAS  Google Scholar 

  34. G. Stewart, T. Smith, and S. Denyer. 1989. Genetic engineering for bioluminescent bacteria, Food Sci. Technol. Today 3 (1): 19.

    Google Scholar 

  35. G. S. A. B. Stewart, and P. Williams. 1992. Lux genes and the applications of bacterial bioluminescence, J. Gen. Microbiol. 138: 1289.

    Article  CAS  Google Scholar 

  36. G. S. A. B. Stewart, S. P. Denyer, and J. Lewington. 1991. Microbiology illuminated: gene engineering and bioluminescence, Trends Food Sci. Technol. 2: 7.

    Article  Google Scholar 

  37. S. Ulitzur, and J. Kuhn. 1987. Introduction of /ux genes into bacteria: a new approach for specific determination of bacteria and their antibiotic susceptibility, in “Bioluminescence and Chemiluminescence New Perspectives,” J. Schlomerich, R. Andreesen, A. Kapp, M. Ernst, and W. G. Woods, eds., John Wiley and Sons, Chichester, U.K., pp. 463–472.

    Google Scholar 

  38. A. B. Ronner, and D. O. Cliver. 1990. Isolation and characterization of a coliphage specific for Escherichia con O157:H7. J. Food Prot. 53: 944.

    Google Scholar 

  39. P. E. Turpin, K. A. Maycroft, J. Bedford, C. L. Rowlands. and E. M. H. Wellington. 1993. A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhirnurimn in environmental samples, Lett. Appl. Microbiol. 16: 24.

    Google Scholar 

  40. J. Chen, and M. W. Griffiths. 1996. Salmonella detection in eggs using lux’ bacteriophages, J. Food Prot. 59: 908.

    CAS  Google Scholar 

  41. C. P. Kodicara, H. H. Crew, and G. S. A. B. Stewart. 1991. Near on-line detection of enteric bacteria using lux recombinant bacteriophage, FEMS Microbiol. Lett. 83: 261.

    Article  Google Scholar 

  42. M. J. Loessner, C. E. D. Rees, G. S. A. B. Stewart, and S. Scherer. 1996. Construction of luciferase reporter bacteriophage a51 I::luxab for rapid and sensitive detection of viable Listeria cells, Appl. Environ. Microbiol. 62: 1133.

    CAS  Google Scholar 

  43. M. J. Loessner, M. Rudolf, and S. Scherer. 1997. Evaluation of luciferase reporter bacteriophage a51 I::luxab for detection of Listeria monocvtogenes in contaminated foods, Appl. Environ. Microbiol. 63: 2961.

    CAS  Google Scholar 

  44. W. R. Jr. Jacobs. R. G. Barletta, R. Udani, J. Chan, G. Kalkut, G. Sosne, T. Kieser, G. J. Sarkis, G. F. Hat-full, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages, Science 260: 819.

    Article  Google Scholar 

  45. M. Barinaga. 1993. New test catches drug-resistant tb in the spotlight, Science 260: 750.

    Article  CAS  Google Scholar 

  46. R. Corbisier, G. Ji, G. Nuyts, M. Mergeay, and S. Silver. 1993. Lux AB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureu.s plasmid P1258 FEMS Microbiol. Lett. 110:231.

    Google Scholar 

  47. A. K. Campbell. 1989. Living light: Biochemistry, function and biomedical applications, Essays Biochem. 24: 41.

    CAS  Google Scholar 

  48. M. Chalfie, T. Yuan, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression, Science 263: 802.

    Article  CAS  Google Scholar 

  49. G. D. Kutuzova, R. R. Hannah, and K. V. Wood. 1997. Bioluminescence color variation and kinetic behavior relationships among beetle luciferases, in “Bioluminescence and Chemiluminescence; Molecular Reporting With Photons,” J. W. Hastings, L. J. Kricka, and R. E. Stanley, eds., John Wiley and Sons Ltd., Chichester, U.K., pp. 248–252.

    Google Scholar 

  50. P. K. Wolber, and R. L. Green. 1990. Detection of bacteria by transduction of ice nucleation genes, Trends Biotechnol. 8: 276.

    Article  CAS  Google Scholar 

  51. R. K. Wolber, and R. L. Green. 1990. New method for the rapid detection of Salmonella in foods, Food Sci. Technol. 1: 80.

    Article  Google Scholar 

  52. P. K. Wolber. 1993. Bacterial ice nucleation, Adv. Microbial Phvsiol. 34: 203.

    Article  CAS  Google Scholar 

  53. K. P. Hennes, and C. A. Suttle. 1995. Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy, Limnol. Oceanog. 40: 1054.

    Article  Google Scholar 

  54. K. P. Hennes, C. A. Suttle, and A. M. Chan. 1995. Fluorescently labeled virus probes in show that natural virus populations can control the structure of marine microbial communities, Appl. Environ. Microbiol. 61: 3623.

    CAS  Google Scholar 

  55. S. P. Denyer, S. A. A. Jassim, and G. S. A. B. Stewart. 1992. Engineering microbial bioluminescence and biosensor applications, in “Molecular Biology in Clinical Research and Diagnosis,” R. Walker, ed., Blackwell Scientific Publications, Oxford, U.K., pp. 403–423.

    Google Scholar 

  56. G. S. A. B. Stewart. 1993. Biosensors. Bacterial luminescence: Development and application, Lancet 341: 279.

    Article  CAS  Google Scholar 

  57. M. Korpela, P. Mäntsälä, E.-M. Lilius, and M. Karp. 1989. Stable-light-emitting Escherichia coli as a biosensor, J. Biolumin. Chemilumin. 4: 551.

    Article  CAS  Google Scholar 

  58. L. Geiselhart, M. Osgood, and D. S. Holmes. 1991. Construction and evaluation of a self-luminescent biosensor, Ann. N. Y. Acad. Sci. 646: 53.

    Article  CAS  Google Scholar 

  59. S. Lee, K. Sode, K. Nakamishi, J. L. Marty, E. Tamiya, and I. Karube. 1992. A novel microbial sensor using luminous bacteria, Biosens. Bioelectr: 7: 273.

    Article  CAS  Google Scholar 

  60. S. M. Gautier, L. J. Blum, and P. R. Coulet. 1991. Bioluminescence-based fibre-optic sensor with entrapped co-reactant: an approach for designing a self-contained biosensor, Anal. Chim. Acta 243: 149.

    Article  CAS  Google Scholar 

  61. O. Selifonova, R. Burlage, and T. Barkay. 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment, Appl. Environ. Microbiol. 59: 3083.

    CAS  Google Scholar 

  62. A. Heitzer, O. F. Webb, J. E. Thonnard, and G. S. Sayler. 1992. Specific and quantitative assessment of naphthalene and salicylate by using a bioluminescent catabolic reporter bacterium, Appl. Environ. Microbiol. 58: 1839.

    CAS  Google Scholar 

  63. C. Holden 1992. Fireflies may light future for biosensors, Science 258: 223.

    Google Scholar 

  64. A. Guzzo, C. Diorio, and M. S. DuBow. 1991. Transcription of the Escherichia coli fliC gene is regulated by metal ions, Appl. Environ. Microbiol. 57: 22–55.

    Google Scholar 

  65. S. Belkin, T. K. Vandyk, A. C. Vollmer, D. R. Smulski, and R. A. Larossa. 1996. Monitoring subtoxic environmental hazards by stress-responsive luminous bacteria, Environ. Toxicol. Water Qual. 11: 179.

    Article  CAS  Google Scholar 

  66. J. S. Blissett, and G. S. A. B. Stewart. 1989. In vivo bioluminescent determination of apparent kin’s for aldehyde in recombinant bacteria expressing luxA/B, Lett. Appl. Microbiol. 9: 149.

    Article  CAS  Google Scholar 

  67. K. Blouin, S. G. Walker, J. Smit, and R. F. B. Turner. 1996. Characterization of in vivo reporter systems for gene expression and biosensor applications based on luxab luciferase genes, Appl. Environ. Microbial. 62: 2013.

    CAS  Google Scholar 

  68. K. V. Wood, and M. G. Gruber. 1996. Transduction in microbial biosensors using multiplexed bioluminescence, Biosens. Bioelectr. 11: 207.

    Article  CAS  Google Scholar 

  69. K. Seeger, and M. W. Griffiths. 1994. ATP bioluminescence for hygiene monitoring in health care institutions, J. Food Prot. 57: 509.

    Google Scholar 

  70. R. Orth, and M. Steigert. 1996. Practical experience in the ATP-bioluminescence measuring technique to control hygiene after cleaning of a meat plant, Fleischwirtschaft 76: 40.

    CAS  Google Scholar 

  71. C. Bell, P. A. Stallard, S. E. Brown, and J. T. E. Standley. 1994. ATP-bioluminescence techniques for assessing the hygienic condition of milk transport tankers, Int. Dairy J. 4: 629.

    Article  CAS  Google Scholar 

  72. D. A. Bautista, L. McIntyre, L. Laleye, and M. W. Griffiths. 1992. The application of ATP bioluminescence for the assessment of milk hygiene and factory hygiene, J. Rapid Meth. Automation Microbiol. 1: 179.

    Article  Google Scholar 

  73. J. A. Poulis, M. de Pijper, D. A. A. Mossel, and P. P. A. Dekkers. 1993. Assessment of cleaning and disinfection in the food industry with the rapid ATP-bioluminescence technique combined with the tissue fluid contamination test and a conventional microbiological method, Int. J. Food Microbiol. 20: 109.

    Article  CAS  Google Scholar 

  74. C. Bell, C. D. Bowles, M. J. K. Toszeghy, and P. Neaves. 1996. Development of a hygiene standard for raw milk based on the lumac ATP-bioluminescence method, Int. Daily J. 6: 709.

    Article  Google Scholar 

  75. D. A. Bautista, J.-P. Vaillancourt, R. Clarke, S. Renwick, and M. W. Griffiths. 1995. The rapid assessment of the microbiological quality of poultry carcasses, J. Food Prot. 58: 551.

    Google Scholar 

  76. H. D. Werlein, and R. Fricke. 1996. ATP bioluminescence for rapid determination of the microbiological quality of poultry meat, Arch. Geflugelkunde 60: 212.

    CAS  Google Scholar 

  77. D. A. Bautista, G. Kozub, K. W. F. Jericho, and M. W. Griffiths. 1997. Evaluation of adenosine triphosphate (ATP) bioluminescence for estimating bacteria on surfaces of beef carcasses, J. Rapid Meth. Automation Microbiol. 5: 37.

    Article  CAS  Google Scholar 

  78. G. R. Siragusa, C. N. Cutter, W. J. Dorsa, and M. Koohmaraie. 1995. Use of a rapid microbial ATP bioluminescence assay to detect contamination on beef and pork carcasses, J. Food Prot. 58: 770.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffiths, M.W. (1998). Bioluminescence. In: Tunick, M.H., Palumbo, S.A., Fratamico, P.M. (eds) New Techniques in the Analysis of Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5995-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5995-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3307-2

  • Online ISBN: 978-1-4757-5995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics